
Eur. Phys J. A 8, 223–250 (2000) THE EUROPEAN
PHYSICAL JOURNAL A
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Abstract. A dynamics of low-energy nuclear forces is investigated for low-energy electromagnetic and weak
nuclear reactions with the deuteron in the Nambu-Jona-Lasinio model of light nuclei by example of the
neutron-proton radiative capture (M1-capture) n + p → D + γ, the photomagnetic disintegration of the
deuteron γ + D → n + p and weak reactions of astrophysical interest. These are the solar proton burning p
+ p→ D + e+ + νe, the pep-process p + e− + p→ D + νe and the neutrino and antineutrino disintegration
of the deuteron caused by charged νe + D → e− + p + p, ν̄e + D → e+ + n + n and neutral νe(ν̄e) + D
→ νe(ν̄e) + n + p weak currents.

PACS. 11.10.Ef Lagrangian and Hamiltonian approach – 13.75.Cs Nucleon-nucleon interactions (including
antinucleons, deuterons, etc.) – 14.20.Dh Protons and neutrons – 21.30.Fe Forces in hadronic systems and
effective interactions

1 Introduction

Recently [1] we have developed the Nambu-Jona-Lasinio
model of light nuclei [2], or differently the nuclear Nambu-
Jona-Lasinio (NNJL) model, invented for the description
of low-energy nuclear forces at the quantum field-theoretic
level. We have shown that the NNJL model is fully mo-
tivated by QCD [1]. The deuteron appears in the nuclear
phase of QCD as a neutron-proton collective excitation, a
Cooper np-pair, caused by a phenomenological local four-
nucleon interaction. Strong low-energy interactions of the
deuteron coupled to itself and other particles are described
in terms of one-nucleon loop exchanges. The one-nucleon
loop exchanges allow to transfer nuclear flavours from an
initial to a final nuclear state by a minimal way and to
take into account contributions of nucleon-loop anoma-
lies determined completely by one-nucleon loop diagrams.
The dominance of contributions of nucleon-loop anoma-
lies is justified in the large NC approach to the descrip-
tion of non-perturbative QCD with SU(NC) gauge group
at NC → ∞, where NC is the number of quark colours.

In this paper we apply the NNJL model to the descrip-
tion of low-energy nuclear forces for electromagnetic and
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weak reactions with the deuteron by example of the evalu-
ation of the cross-sections for the neutron-proton radiative
capture n + p → D + γ for thermal neutrons caused by
the 1S0 → 3S1 transition (the M1-transition), the photo-
magnetic disintegration of the deuteron γ + D → n + p
and weak reactions of astrophysical interest: 1) the solar
proton burning p + p → D + e+ + νe, 2) the pep-process
p + e− + p → D + νe and 3) the reactions of neutrino
and antineutrino disintegration of the deuteron caused by
charged νe + D → e− + p + p, ν̄e + D → e+ + n + n
and neutral νe(ν̄e) + D → νe(ν̄e) + n + p weak currents.

1.1 Low-energy electromagnetic nuclear reactions with
the deuteron

It is well known that the reaction of the neutron-proton
radiative capture n + p → D + γ for thermal neutrons
plays an important role for the primordial nucleosynthesis
in the Big-Bang model [3]. Indeed, the deuterons produced
via the neutron-proton radiative capture n + p → D + γ
burn to 4He through the reactions D + p → 3He + γ and
3He + n → 4He + γ. Therefore, the correct description
of the neutron-proton radiative capture n + p → D + γ
is essential for the theoretical prediction of the amount of
the matter in the Universe.

The reaction of the photomagnetic disintegration of
the deuteron γ + D → n + p is related to the neutron-
proton radiative capture n + p → D + γ via time-reversal
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invariance of strong and electromagnetic forces. The inves-
tigation of this reaction is conceived to get an additional
check of our result for the M1-capture related to the analy-
sis of the energy dependence of the cross-section calculated
in the NNJL model at energies far from threshold.

The cross-section σ(np → Dγ)(Tn) for the neutron-
proton radiative capture has been measured for thermal
neutrons at the laboratory kinetic energy Tn = 0.0252 eV
that corresponds to the laboratory velocity vn/c = 7.34×
10−6 (the absolute value is vn = 2.2 × 105 cm/s) [4]:

σ(np → Dγ)exp(Tn) = (334.2 ± 0.5) mb. (1.1)

For the first time the cross-section for the neutron-proton
radiative capture has been calculated by Austern [5] in
the Potential model approach (PMA):

σ(np → Dγ)(Tn) = (303 ± 4) mb. (1.2)

The observed discrepancy about 10% has been then ex-
plained by Riska and Brown [6] in terms of the contribu-
tions of the exchange currents and the ∆(1232) resonance.

Recently the evaluation of the cross-section for the
neutron-proton radiative capture n + p → D + γ has
been carried out by using Chiral perturbation theory in
the framework of the Effective Field Theory (EFT) ap-
proach [7–10] formulated by Weinberg within Effective
Chiral Lagrangian description of nuclear forces [11] (see
also refs. [12]). The theoretical results obtained in refs.
[7–10] for the cross-section for the neutron-proton radia-
tive capture are rather contradictory. Indeed, in ref. [7] the
experimental value of the cross-section for the M1-capture
has been reproduced without free parameters, the defini-
tion of which demands a fit of experimental data, with an
accuracy better than 1%, σ(np → Dγ)(Tn) = (334±3) mb.
In turn, in the more recent publications [8–10] the predic-
tions are not so much optimistic. Indeed, in ref. [8] there
has been obtained the value σ(np → Dγ)(Tn) = 297.2 mb
which is about 11% less compared with the experimen-
tal one eq. (1.1). As has been stated in ref. [8] for the
evaluation of the correct value of the cross-section for the
M1-capture within the EFT one needs to add a free pa-
rameter undefined in the approach. This parameter should
be fixed from the fit of the experimental value eq. (1.1).
This program has been realized in ref. [9]. Then, in refs.
[10] the neutron-proton radiative capture has been calcu-
lated for the center of mass energies of the np pair up to
Tnp ≤ 1 MeV, Tn = 2Tnp, by including the contribution of
the E1-transition in addition to the M1. This has added
new free parameters with respect to that introduced in
refs. [8,9], where only the M1-transition has been taken
into account.

In the NNJL model we calculate the cross-section for
the M1-capture both in the tree-meson approximation and
by including the contributions of chiral one-meson loop
corrections and the ∆(1232) resonance. For the evalua-
tion of chiral one-meson loop corrections we apply chiral
perturbation theory at the quark level (CHPT)q [13] de-
veloped within the extended Nambu-Jona-Lasinio (ENJL)
model with a linear realization of chiral U(3)×U(3) sym-
metry.

In our consideration the ∆(1232) resonance is the
Rarita-Schwinger field [14] ∆a

µ(x), the isotopical index a
runs over a = 1, 2, 3, having the following free Lagrangian
[15,16]:

L∆
kin(x) = ∆̄a

µ(x)[−(iγα∂α −M∆) gµν

+
1
4
γµγβ(iγα∂α −M∆)γβγ

ν ]∆a
ν(x), (1.3)

where M∆ = 1232 MeV is the mass of the ∆ resonance
field ∆a

µ(x). In terms of the eigenstates of the electric
charge operator the fields ∆a

µ(x) are given by [15,16]

∆1µ(x) = 1√
2

(
∆++µ (x) −∆0µ(x)/

√
3

∆+µ (x)/
√

3 −∆−
µ (x)

)
,

∆2µ(x) = i√
2

(
∆++µ (x) +∆0µ(x)/

√
3

∆+µ (x)/
√

3 +∆−
µ (x)

)
,

∆3µ(x) = −
√
2
3

(
∆+µ (x)
∆0µ(x)

)
.

(1.4)

The fields ∆a
µ(x) obey the subsidiary constraints:

∂µ∆a
µ(x) = γµ∆a

µ(x) = 0 [14–16]. The Green function
of the free ∆–field is determined by

〈0|T(∆µ(x1)∆̄ν(x2))|0〉 = −iSµν(x1 − x2). (1.5)

In the momentum representation Sµν(x) reads [15–17]:

Sµν(p) =
1

M∆ − p̂

×
(

− gµν +
1
3
γµγν +

1
3
γµpν − γνpµ

M∆
+

2
3
pµpν

M2
∆

)
. (1.6)

The most general form of the πN∆-interaction compatible
with the requirements of chiral symmetry reads [18]

LπN∆(x) =
gπN∆

2MN
∆̄a

ω(x)ΘωϕN(x)∂ϕπ
a(x) + h.c.

=
gπN∆√
6MN

[
1√
2
∆̄+ω (x)Θωϕn(x)∂ϕπ

+(x)

− 1√
2
∆̄0ω(x)Θωϕp(x)∂ϕπ

−(x)

−∆̄+ω (x)Θωϕp(x)∂ϕπ
0(x)

−∆̄0ω(x)Θωϕp(x)∂ϕπ
0(x) + . . .

]
, (1.7)

where MN = Mn = Mp = 940 MeV is the nucleon mass.
The nucleon field N(x) is the isotopical doublet with the
components N(x) = (p(x), n(x)), and πa(x) is the pion
field with the components π1(x) = (π−(x) + π+(x))/

√
2,

π2(x) = (π−(x) − π+(x))/i
√

2 and π3(x) = π0(x). The
tensor Θωϕ is given in ref. [15]: Θωϕ = gωϕ − (Z +
1/2)γωγϕ, where the parameter Z is arbitrary. There is no
consensus on the exact value of Z. From the theoretical
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point of view Z = 1/2 is preferred [15]. Phenomenological
studies give only the bound |Z| ≤ 1/2 [18]. The value of
the coupling constant gπN∆ relative to the coupling con-
stant gπNN is gπN∆ = 2 gπNN [19].

Assuming that the transition ∆ → N + γ is primarily
a magnetic one the effective Lagrangian describing the
∆→ N + γ decays can be determined as [19–21]

LγN∆(x) = ie
gγN∆

2MN
N̄(x)γαγ

5∆3β(x)F βα(x) + h.c.

= − ie√
6
gγN∆

MN
[p̄(x)γαγ

5∆+β (x)

+n̄(x)γαγ
5∆0β(x)]F βα(x) + h.c., (1.8)

where Fαβ(x) = ∂αAβ(x) − ∂βAα(x) is the electromag-
netic strength field tensor and Aα(x) is a vector poten-
tial of the electromagnetic field. The value of the cou-
pling constant gγN∆ relative to the coupling constant gπNN
is gγN∆ = 0.14 gπNN caused by the SU(6) symmetry of
strong low-energy interactions [19].

The NNJL model realizes the Lagrange approach to
the description of low-energy nuclear forces [1]. For the
evaluation of the effective Lagrangian of the transition n
+ p → D + γ it is necessary, first, to determine the effec-
tive Lagrangian of the strong low-energy transition n +
p → n + p, or more generally N + N → N + N, where
N = (p, n) is a nucleon field. Since the NNJL model de-
scribes low-energy interactions of the deuteron in terms
of one-nucleon loop exchanges the effective Lagrangian of
the transition N + N → N + N plays an important role.
Due to the transition n + p → n + p the np pair on-mass
shell in the initial state transfers itself into the np pair off-
mass shell couples to the deuteron and the photon through
one-nucleon loop exchanges. Then, the one-nucleon loop
diagrams are calculated at leading order in the 1/MN ex-
pansion that corresponds to the large NC expansion due
to the proportionality MN ∼ NC valid in the multi-colour
QCD with SU(NC) gauge group at NC → ∞ [22].

Such a procedure of the evaluation of effective La-
grangians in the NNJL model resembles that has being
used in the ENJL model [13,23–25] for the derivation of
effective chiral Lagrangians up to the formal replacement
q(q̄) → N(N̄), where q(q̄) is a quark (antiquark) field.
In the ENJL model the dominance of the leading order
contributions in the 1/Mq expansion, where Mq is a con-
stituent quark mass, has been explained by a dynamics of
quark confinement, whereas in the NNJL model the domi-
nance of the leading contributions in the 1/MN expansion
is justified by the large NC approach to non-perturbative
QCD.

Since relative momenta of the np pair in the reaction
of the M1-capture are smaller compared with the mass of
the pion Mπ = 135 MeV, for the derivation of the effective
Lagrangian of the strong low-energy transition n + p → n
+ p we can follow the ideology of the EFT [7–12] and inte-
grate out pion degrees of freedom as well as other heavier
degrees of freedom. The result of the integration can be
represented in the form of two contributions, where the
first is the explicit one-pion exchange, whereas the second

is a phenomenological one describing a collective contri-
bution of both many-pion exchanges and heavier meson
degrees of freedom such as σ(660), ρ(770), ω(782) and so
on.

The effective Lagrangian Lnp→npone-pion(x) of the strong
low-energy transition n + p → n + p in the one-pion
exchange approximation is defined by

Lnp→npone-pion(x) =
g2πNN
M2

π

{[n̄(x)γ5n(x)][p̄(x)γ5p(x)]

−2 [p̄(x)γ5n(x)][n̄(x)γ5p(x)]}, (1.9)

where gπNN = 13.4 is the πNN coupling constant, n(x)
and p(x) are the operators of the interpolating fields of
the neutron and the proton. The effective Lagrangian eq.
(1.9) is local, as we have neglected the squared momen-
tum transfer −q2 with respect to the squared pion mass,
−q2 �M2

π . Since in the reaction n + p → D + γ the np
pair couples to the deuteron and the photon in the 1S0
state, we should rearrange the operators of the neutron
and the proton interpolating fields in the effective interac-
tion eq. (1.9) by such a way to introduce the products of
the np operators creating the np states with definite total
spins. This rearrangement can be carried out by means of
the Fierz transformation that gives

γ5 ⊗ γ5 =
1
4
C ⊗ C +

1
4
γ5C ⊗ Cγ5 +

1
4
γµC ⊗ Cγµ

+
1
4
γµγ5C ⊗ Cγµγ

5+
1
8
σµνC ⊗ Cσµν , (1.10)

where σµν = (γµγν − γνγµ)/2. By virtue of eq. (1.10) we
recast the effective Lagrangian eq. (1.9) into the form

Lnp→npone-pion(x) =
g2πNN
4M2

π

{[p̄(x)γ5nc(x)][n̄c(x)γ5p(x)]

+[p̄(x)γµγ5nc(x)][n̄c(x)γµγ
5p(x)]

+[p̄(x)nc(x)][n̄c(x)p(x)]
+3 [p̄(x)γµnc(x)][n̄c(x)γµp(x)]

+
3
2

[p̄(x)σµνnc(x)][n̄c(x)σµνp(x)]}. (1.11)

Here n̄c(x) = nT (x)C and nc(x) = Cn̄T (x), where C is a
charge conjugation matrix and T is a transposition. The
first two terms in the effective Lagrangian eq. (1.11) de-
scribe the strong low-energy 1S0 → 1S0 transition of the
np pair in the 1S0 state. Thereby, the effective Lagrangian
providing the 1S0 → 1S0 transition of the np pair and
caused by the one-pion exchange we would use in the form

Lnp→npone-pion(x) =
g2πNN
4M2

π

{[p̄(x)γ5nc(x)][n̄c(x)γ5p(x)]

+[p̄(x)γµγ5nc(x)][n̄c(x)γµγ
5p(x)]}. (1.12)

The phenomenological part of the effective Lagrangian re-
sponsible for the strong low-energy 1S0 → 1S0 transition
of the np pair in the 1S0 state we would choose by follow-
ing the EFT ideology [7–12] as well and write

Lnp→npph. (x) = −2πanp
MN

{[p̄(x)γ5nc(x)][n̄c(x)γ5p(x)]

+ [p̄(x)γµγ5nc(x)][n̄c(x)γµγ
5p(x)]}, (1.13)
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where anp = (−23.75 ± 0.01) fm is the S wave scattering
length of the elastic np scattering in the 1S0 state [17].

The appearance of the S wave scattering length for
the definition of the phenomenological coupling constant
of the strong low-energy transition n + p → n + p, or
differently low-energy elastic np scattering is rather nat-
ural in the EFT. Indeed, in the EFT pions are treated
perturbatively and at leading order in the pion-exchange
approximation for the description of the S wave scattering
length of low-energy elastic np scattering in the 1S0 state
Weinberg has introduced a phenomenological four-nucleon
interaction with a coupling constant [11]

C0 = −4πanp
MN

. (1.14)

As has been stated in the EFT this constant is a col-
lective contribution coming from the integration over
all meson degrees of freedom heavier than the pionic
ones. Since in our approach we separate the pionic de-
grees of freedom from that with masses heavier than
the pion as well, the integration over these heavy me-
son degrees of freedom should have the same form as
it is postulated in the EFT. We have only halved the
coupling constant C0 defined by eq. (1.14) in order
to distribute symmetrically phenomenological contribu-
tions between couplings [p̄(x)γ5nc(x)][n̄c(x)γ5p(x)] and
[p̄(x)γµγ5nc(x)][n̄c(x)γµγ

5p(x)].
The total effective Lagrangian describing the strong

low-energy transition n + p → n + p of the np pair in the
1S0 state is then determined by

Lnp→npeff (x) = Lnp→npone-pion(x) + Lnp→npph. (x) =

= CNN {[p̄(x)γ5nc(x)][n̄c(x)γ5p(x)]
+ [p̄(x)γµγ5nc(x)][n̄c(x)γµγ

5p(x)]}, (1.15)

where the effective coupling constant CNN of the strong
low-energy transition n + p → n + p is equal to

CNN =
g2πNN
4M2

π

− 2πanp
MN

= 3.27 × 10−3 MeV−2. (1.16)

Note that the contribution of the phenomenological part
to the effective coupling constant CNN makes up less than
33%.

Since nuclear forces are isotopically invariant [26], the
effective Lagrangian of the strong low-energy N + N →
N + N transition of the NN pair in the 1S0 state can be
defined as follows:

LNN→NN
eff (x) = CNN {[p̄(x)γ5nc(x)][n̄c(x)γ5p(x)]

+ [p̄(x)γµγ5nc(x)][n̄c(x)γµγ
5p(x)]

+
1
2

[n̄(x)γ5nc(x)][n̄c(x)γ5n(x)]

+ [n̄(x)γµγ5nc(x)][n̄c(x)γµγ
5n(x)]

+
1
2

[p̄(x)γ5pc(x)][p̄c(x)γ5p(x)]

+ [p̄(x)γµγ5pc(x)][p̄c(x)γµγ
5p(x)]}. (1.17)

We would like to emphasize the effective Lagrangian eq.
(1.16) describing strong low-energy N + N → N + N tran-
sitions is obtained in complete agreement with the EFT
ideology.

In the low-energy limit the effective local four-nucleon
interaction eq. (1.17) vanishes due to the reduction

[N̄(x)γµγ
5N c(x)][N̄ c(x)γµγ5N(x)] →

−[N̄(x)γ5N c(x)][N̄ c(x)γ5N(x)], (1.18)

where N(x) is an operator of the neutron or the proton
interpolating field. Such a vanishing of the one-pion ex-
change contribution to the NN potential is well-known in
the EFT approach [11,12] and the PMA [26]. In power
counting [11,12] the interaction induced by the one-pion
exchange is of order O(p2), where p is a relative momen-
tum of the NN system. The former is due to the Dirac
matrix γ5 which leads to the interaction between small
components of Dirac bispinors of nucleon wave functions.

In the one-nucleon loop exchange approach the
contributions of the interactions [N̄(x)γµγ

5N c(x)] ·
[N̄ c(x)γµγ5N(x)] and [N̄(x)γ5N c(x)][N̄ c(x)γ5N(x)] to
the amplitudes of nuclear reactions are different and do
not cancel each other in the low-energy limit due to
the dominance of nucleon-loop anomalies [1]. This pro-
vides the interaction between large components of Dirac
bispinors of nucleon wave functions that distinguishes the
NNJL model from the EFT.

1.2 Low-energy weak nuclear reactions with the
deuteron

The weak nuclear reaction p + p → D + e+ + νe, the solar
proton burning, plays an important role in Astrophysics
[3,27]. It gives start for the p-p chain of nucleosynthesis
in the Sun and main-sequence stars [3,27]. In the Stan-
dard Solar Model (SSM) [28] the total (or bolometric)
luminosity of the Sun L� = (3.846 ± 0.008) × 1026 W
is normalized to the astrophysical factor Spp(0) for the
solar proton burning. The recommended value Spp(0) =
4.00 × 10−25 MeVb [29] has been found by averaging over
the results obtained in the Potential model approach
(PMA) [30,31] and the Effective Field Theory (EFT) ap-
proach [32,33]. As has been shown recently in ref. [34] the
inverse and forward helioseismic approach confirm the rec-
ommended value of Spp(0) within experimental errors on
the helioseismic data and solar neutrino fluxes.

In this paper we apply the NNJL model to the de-
scription of low-energy nuclear forces for weak nuclear re-
actions with the deuteron of astrophysical interest: 1) the
solar proton burning p + p → D + e+ + νe, 2) the pep-
process p + e− + p → D + νe and 3) the reactions of
neutrino and antineutrino disintegration of the deuteron
caused by charged νe + D → e− + p + p, ν̄e + D → e+
+ n + n and neutral νe(ν̄e) + D → νe(ν̄e) + n + p weak
currents. The reactions νe + D → e− + p + p and νe
+ D → νe + n + p caused by charged and neutral weak
currents, respectively, and induced by solar neutrinos are
planned to be measured for solar neutrino experiments at
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Fig. 1. One-nucleon loop diagrams of the contribution of the
effective coupling [p̄(x)γ5nc(x)][n̄c(x)γ5p(x)] to the effective
Lagrangian of the M1 transition n + p → D + γ.

Sudbury Neutrino Observatory (SNO) [35]. In turn, the
cross-sections for the reactions ν̄e + D → e+ + n + n
and ν̄e + D → ν̄e + n + p caused by charged and neutral
weak currents, respectively, and induced by reactor an-
tineutrinos have been recently measured by the Reines’s
experimental group [36]. In the sense of charge indepen-
dence of weak interaction strength the observation of the
reaction ν̄e + D → e+ + n + n is equivalent to the obser-
vation of the reaction of the solar proton burning p + p
→ D + e+ + νe in the terrestrial laboratories.

The paper is organized as follows. In sect. 2 we eval-
uate the amplitude of the M1-capture n + p → D +
γ in the tree-meson approximation. The contribution of
low-energy elastic np scattering to the amplitude of the
process n + p → D + γ is obtained in agreement with
low-energy nuclear phenomenology. In sect. 3 we evalu-
ate contributions of chiral one-meson loop corrections to
the amplitude of the M1-capture in chiral perturbation
theory at the quark level (CHPT)q developed within the
ENJL model with a linear realization of chiral U(3)×U(3)
symmetry. In sect. 4 we include the contribution of the
∆(1232) resonance and analyse the total cross-section for
the neutron-proton radiative capture for thermal neu-
trons and compare it with experimental data. In sect. 5
we treat the reaction of the photomagnetic disintegra-
tion of the deuteron γ + D → n + p related to the
neutron-proton radiative capture n + p → D + γ via time-
reversal invariance and analyse the energy dependence of
the cross-section at energies far from threshold. In sect. 6
we evaluate the amplitude of the solar proton burning.
We show that the contribution of low-energy elastic pp
scattering in the 1S0 state with the Coulomb repulsion
is described in agreement with low-energy nuclear phe-
nomenology in terms of the S wave scattering length and
the effective range. In sect. 7 we evaluate the astrophysical
factor for the solar proton burning and obtain the value
Spp(0) = 4.08 × 10−25 MeV b agreeing well with the re-
commended one Spp(0) = 4.00 × 10−25 MeV b. In sect. 8
we evaluate the cross-section for the neutrino disintegra-
tion of the deuteron νe + D → e− + p + p with respect
to Spp(0). In sect. 9 we adduce the evaluation of the as-
trophysical factor Spep(0) for the pep-process relative to
Spp(0). In sects. 10 and 11 we evaluate the cross-sections
for the antineutrino disintegration of the deuteron ν̄e +
D → e+ + n + n and ν̄e + D → ν̄e + n + p and av-

ncnc

αβσ
µγ

γ γ5α

γν

γ γ5

α
γ γ5

α

γ γ5α

 ...

D

p

p

n

p

γ

D
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p

γ

a b

γν

+ +

Fig. 2. One-nucleon loop diagrams of the contribution of the
effective coupling [p̄(x)γαγ5nc(x)][n̄c(x)γαγ

5p(x)] to the effec-
tive Lagrangian of the M1 transition n + p → D + γ.

erage them over the antineutrino energy spectrum. The
average values of the cross-sections agree well with ex-
perimental data [36]. The cross-sections for the weak nu-
clear reactions of astrophysical interest are calculated at
zero contribution of the nucleon tensor current [1]. This
makes the description of low-energy nuclear forces within
the NNJL model compatible with the predictions of the
SSM [27,28]. In more detail this is discussed the conclu-
sion and appendix. In the conclusion we discuss the ob-
tained results. In the appendix we evaluate the effective
Lagrangian Lpp→De+νe

eff (x) of the low-energy weak tran-
sition p + p → D + e+ + νe. The contribution of the
nucleon tensor current [1] to the effective Lagrangians of
low-energy weak nuclear transitions of astrophysical inter-
est like p + p → D + e+ + νe and so on is evaluated and
discussed.

2 The M1-capture in the tree-meson
approximation

Since the NNJL model realizes a Lagrange approach to the
description of low-energy nuclear forces [1], the first thing
that we have to do is to evaluate the effective Lagrangian
Lnp→Dγ
eff (x) of the transition n + p → D + γ. In the tree-

meson approximation the effective Lagrangian Lnp→Dγ
eff (x)

is defined by one-nucleon loop diagrams depicted in figs. 1
and 2. The evaluation of these diagrams at leading order
in the large NC expansion yields

Lnp→Dγ
eff (x) = (µp − µn)

e

2MN

gV
4π2

×CNND†
µν(x)∗Fµν(x)[p̄c(x)γ5n(x)]

+i (µp − µn)
e

2MN

gV
4π2

CNNMN

×D†
µ(x)∗Fµν(x)[p̄c(x)γνγ

5n(x)], (2.1)

where ∗Fµν(x) = 1
2 ε

µναβFαβ(x), µp = 2.793 and µn =
− 1.913 are the magnetic dipole moments of the proton
and the neutron measured in nuclear magnetons, Dµ(x) is
the operator of the interpolating field of the deuteron and
Dµν(x) = ∂µDν(x) − ∂νDµ(x), gV is a phenomenological
coupling constant of the NNJL model related to the elec-
tric quadrupole moment of the deuteron QD = 0.286 fm2

[1]: g2V = 2π2QDM2
N.
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The matrix element of the transition n + p → D + γ
we define in the usual way∫

d4x〈D(kD)γ(k)|Lnp→Dγ
eff (x)|n(p1)p(p2)〉 =

(2π)4δ(4)(kD + k − p1 − p2) M(n + p → D + γ)√
2E1V 2E2V 2EDV 2ωV

,

(2.2)

where Ei (i = 1, 2,D) and ω are the energies of the neu-
tron, the proton, the deuteron and the photon, V is the
normalization volume.

The wave functions of the initial |n(p1)p(p2)〉 and final
〈D(kD)γ(k)| state we take in the usual form

|n(p1)p(p2)〉 = a†n(p1, σ1) a†p(p2, σ2)|0〉,
〈D(kD)γ(k)| = 〈0|aD(kD, λD) a(k, λ), (2.3)

where a†n(p1, σ1) and a†p(p2, σ2) are the operators of cre-
ation of the neutron and the proton, and aD(kD, λD) and
a(k, λ) are the operators of annihilation of the deuteron
and the photon.

The matrix element of the transition n + p → D + γ
reads

M(n + p → D + γ) =

= (µp−µn)
e

2MN

gV
4π2

CNN ε
αβµνkα e

∗
β(k, λ) e∗µ(kD, λD)

×[ūc(p2)(2 kDν −MNγν)γ5u(p1)], (2.4)

where e∗β(k, λ) and e∗µ(kD, λD) are the 4-vectors of the po-
larization of the photon and the deuteron, then ūc(p2)
and u(p1) are the bispinorial wave functions of the
proton and the neutron, respectively, normalized by
ūc(p2)uc(p2) = − 2MN and ū(p1)u(p1) = 2MN.

In the low-energy limit when

[ūc(p2)γνγ
5u(p1)] → −gν0 [ūc(p2)γ5u(p1)] (2.5)

and kDν → gν0 2MN the matrix element eq. (2.4) acquires
the form

M(n + p → D + γ) = e (µp − µn)
5gV
8π2

×CNN (k × e ∗(k, λ)) · e ∗(kD, λD)[ūc(p2)γ5u(p1)].(2.6)

The evaluation of the matrix element eq. (2.6), the effec-
tive vertex of the n + p → D + γ transition, we have
carried out with the wave functions of the neutron and
the proton in the form of the plane waves. However, a
physical 1S0 state of the np pair is defined by low-energy
nuclear forces. For the description of the contribution of
low-energy nuclear forces to the physical 1S0 state of the
np pair coupled to the deuteron and the photon we sug-
gest to sum an infinite series of one-nucleon bubbles with
vertices defined by the effective Lagrangian Lnp→npeff (x) eq.
(1.15). The result of the summation can be represented in

the following form

M(n + p → D + γ) = e (µp − µn)
5gV
8π2

CNN (k × e ∗(k, λ)) · e ∗(kD, λD)[ūc(p2)γ5u(p1)]

× 1

1+
CNN
16π2

∫
d4q
π2i

tr

{
γ5

1
MN − q̂ − P̂ − Q̂γ

5 1
MN−q̂−Q̂

} ,

(2.7)

where P = p1+p2 = (2
√
p2 +M2

N,0 ) is the 4-momentum
of the np pair in the center-of-mass frame. Then, Q =
aP + bK = a (p1+p2)+ b (p1−p2) is an arbitrary shift of
virtual momentum with arbitrary parameters a and b, and
in the center-of-mass frame K = p1 − p2 = (0, 2 p ). The
explicit dependence of the momentum integral on Q can
be evaluated by means of the Gertsein-Jackiw procedure
[37] (see also ref. [1]). It is given by

∫
d4q
π2i

tr

{
γ5

1
MN − q̂ − P̂ − Q̂γ

5 1
MN − q̂ − Q̂

}
=

∫
d4q
π2i

tr

{
γ5

1
MN − q̂ − P̂ γ

5 1
MN − q̂

}

−2 a (a+ 1)P 2 − 2 b2K2. (2.8)

For the evaluation of the momentum integral over q we
would keep only the leading order contributions in the
1/MN expansion caused by the large NC expansion [1].
This yields

∫
d4q
π2i

tr

{
γ5

1
MN − q̂ − P̂ − Q̂γ

5 1
MN − q̂ − Q̂

}
=

−8a(a+ 1)M2
N + 8 (b2 − a (a+ 1)) p2 − i 8πMNp. (2.9)

The expression eq. (2.7) we reduce to the form

M (n + p → D + γ) = e (µp − µn)
5gV
8π2

CNN

×(k × e ∗(k, λ)) · e ∗(kD, λD) [ūc(p2)γ5u(p1)]

× Z
1 − 1

2
rnpanpp

2 + ianpp
. (2.10)

Here we have denoted

anp = −CNNMN

2π
Z ,

rnp = (b2 − a (a+ 1))
2
π

1
MN

,

1
Z = 1 − a(a+ 1)

2π2
CNNM

2
N, (2.11)

where rnp = 2.75 ± 0.05 fm is the effective range of low-
energy elastic np scattering [17].

Renormalizing the wave functions of nucleons√Z u(p1) → u(p1) and
√Z u(p2) → u(p2), we arrive at
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the expression

M (n + p → D + γ) = e (µp − µn)
5gV
8π2

CNN

×(k × e ∗(k, λ)) · e ∗(kD, λD) [ūc(p2)γ5u(p1)]

× 1

1 − 1
2
rnpanpp

2 + i anpp
, (2.12)

where the factor 1/(1 − 1
2rnpanpp

2 + i anpp) describes the
contribution of low-energy nuclear forces to the physical
1S0 state of the np pair coupled to the deuteron and the
photon. It has the form of the amplitude of low-energy
elastic np scattering in the 1S0 state in complete agree-
ment with low-energy nuclear phenomenology [26]. By us-
ing the relation expressing the phase shift δnp(p) of low-
energy elastic np scattering in terms of the S wave scat-
tering length anp and the effective range rnp [26]

ctg δnp(p) = − 1
anp

+
1
2
rnp p

2, (2.13)

we can recast the factor 1/(1 − 1
2rnpanpp

2 + i anpp) into
the form

1

1 − 1
2
rnpanpp

2 + i anpp
= eiδnp(p) sin δnp(p)

−anp p . (2.14)

In terms of the phase shift δnp(p) the expression eq. (2.12)
reads

M(n + p → D + γ) =

e (µp − µn)
5gV
8π2

CNN (k × e ∗(k, λ)) · e ∗(kD, λD)

× [ūc(p2)γ5u(p1)] eiδnp(p) sin δnp(p)
−anp p . (2.15)

In the NNJL model low-energy nuclear forces between the
neutron and the proton in the physical deuteron state are
described by the one-nucleon loop exchanges in terms of
the phenomenological coupling constant gV which is de-
fined by the electric quadrupole moment of the deuteron
QD, g2V = 2π2QDM2

N [1]. The electric quadrupole mo-
ment of the deuteron is caused by nuclear tensor forces
[26]. Therefore, the relation g2V = 2π2QDM2

N confirms at
the quantum field-theoretic level the fact pointed out by
Blatt and Weisskopf that the existence of a bound triplet
state of the neutron-proton system would be entirely due
to the tensor force [38]. Thus, in NNJL model through
the phenomenological coupling constant gV tensor forces
govern the existence of the deuteron as a bound neutron-
proton triplet spin state and strength of low-energy inter-
actions of the deuteron with nucleons and other particles
in terms of the one-nucleon loop exchanges. The evalua-
tion of one-nucleon loop diagrams at leading order in the
1/MN expansion, or in the large NC expansion, reduces a
momentum dependence of nucleon diagrams to the trivial
form accounting for only the Lorentz covariant properties
of the interaction. In this approach the deuteron looks like

a point-like particle. Such a representation is enough for
the evaluation of effective Lagrangians of different low-
energy nuclear transitions with the deuteron in an initial
or a final state describing effective vertices of low-energy
nuclear transitions defined at their thresholds. However,
for the evaluation of amplitudes of low-energy nuclear re-
actions for energies far from threshold one needs to take
into account a spatial smearing of the physical deuteron
caused by a finite radius rD = 1/

√
εDMN = 4.319 MeV

[17] determined by the binding energy of the deuteron
εD = 2.225 MeV. The spatial smearing of the physical
deuteron we introduce phenomenologically in the form

FD(p) =
1

1 + r2Dp2
, (2.16)

that is nothing more than the momentum representation
of the approximate 3S1 wave state of the deuteron [26].

Substituting eq. (2.16) in eq. (2.15), we obtain the am-
plitude of the M1-capture calculated in the NNJL model:

M(n + p → D + γ) =

e (µp − µn)
5gV
8π2

CNN (k × e ∗(k, λ)) · e ∗(kD, λD)

× [ūc(p2)γ5u(p1)] eiδnp(p) sin δnp(p)
−anp p

1
1 + r2Dp2

. (2.17)

For thermal neutrons the kinetic energy of the relative
movement of the np pair is of order Tnp ∼ 10−8 MeV. This
yields the relative momentum of the np pair to be smaller
compared with the binding energy of the deuteron, p ∼
3 × 10−3 MeV � εD = 2.225 MeV. Therefore, for thermal
neutrons without loss of generality we can calculate the
amplitude of the M1-capture setting p = 0:

M(n + p → D + γ) =

e (µp − µn)
5gV
8π2

CNN (k × e ∗(k, λ)) · e ∗(kD, λD)

× [ūc(p2)γ5u(p1)]. (2.18)

Thus, we have obtained that the amplitude of the neutron-
proton radiative capture n + p → D + γ for thermal
neutrons coincides with the matrix element of the effective
Lagrangian Lnp→Dγ

eff (x) given by eq. (2.6).
The cross-section for the M1-capture for thermal neu-

trons calculated in the tree-meson approximation is then
defined by

σ(np → Dγ)(Tn) =

1
vn

(µp − µn)2
25
64

α

π2
QD C

2
NNMN ε

3
D

(
1+

1
2
Tn
εD

)3

= 276 mb. (2.19)

The theoretical value σ(np → Dγ)(Tn) = 276 mb is
about 17% smaller compared with the experimental one
σ(np → Dγ)exp(Tn) = (334.2± 0.5) mb. Thus, in the tree-
meson approximation the NNJL model predicts the cross-
section for the M1-capture for thermal neutrons somewhat
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worse than the EFT, σ(np → Dγ)(Tn) = 297.2 mb [8]. In
order to improve the agreement with the experimental
data we have to include chiral one-meson loop corrections
[7–9] and the contribution of the ∆(1232) resonance [6,7].

3 Chiral one-meson loop corrections to the
amplitude of the M1-capture

For the evaluation of chiral meson-loop corrections in the
NNJL we use (CHPT)q developed in refs. [13] within the
ENJL model with a linear realization of chiral U(3)×U(3)
symmetry. Below we consider the contributions of chiral
one-meson loop corrections induced by the virtual meson
transitions π → a1γ, a1 → π γ, π → (ω, ρ)γ, (ω, ρ) → πγ,
σ → (ω, ρ)γ and (ω, ρ) → σγ, where σ is a scalar partner
of pions under chiral SU(2) × SU(2) transformations in
(CHPT)q with a linear realization of chiral U(3) × U(3)
symmetry [13].

The effective Lagrangians δLppγ
eff (x) and δLnnγ

eff (x),
caused by the virtual meson transitions π → a1 γ, a1 →
π γ, π → (ω, ρ)γ, (ω, ρ) → πγ, σ → (ω, ρ)γ and (ω, ρ) →
σγ, we evaluate at leading order in the large NC expansion
[1]. The results of the evaluation contain divergent contri-
butions. In order to remove these divergences we apply
the renormalization procedure developed in (CHPT)q for
the evaluation of chiral meson-loop corrections (see Ivanov
in refs. [13]). Since the renormalized expressions should
vanish in the chiral limit Mπ → 0 [13], only the virtual-
meson transitions with intermediate π-meson give non-
trivial contributions. The contributions of the virtual me-
son transitions with the intermediate σ-meson are found
finite in the chiral limit and subtracted according to the
renormalization procedure [13]. Such a cancellation of the
σ-meson contributions in the one-meson loop approxima-
tion agrees with Chiral perturbation theory using a non-
linear realization of chiral symmetry, where σ-meson-like
exchanges can appear only in two-meson loop approxima-
tion. Then, the sum of the contributions of the virtual-
meson transitions π− → ρ−γ, π0 → ρ0γ and π0 → ωγ to
the effective coupling nnγ is equal to zero. As a result the
effective Lagrangians δLppγ

eff (x) and δLnnγ
eff (x) are given by

δLppγ
eff (x) =

ie

4MN

[
gAgπNN

αρ

16π3
MN

Fπ
M2

π Jπa1N

+gπNN
NCαρ

16π3
MN

Fπ
M2

π JπVN

]

× [p̄(x)σµνp(x)]Fµν(x),

δLnnγ
eff (x) =

ie

4MN

[
− gAgπNN

αρ

16π3
MN

Fπ
M2

π Jπa1N

]

×[n̄(x)σµνn(x)]Fµν(x), (3.1)

where αρ = g2ρ/4π = 2.91 is the effective coupling con-
stant of the ρ→ ππ decay, Fπ = 92.4 MeV is the leptonic
coupling constant of pions, and gA = 1.267 [39]. Then,
Jπa1N andJπVN are the momentum integrals determined

by

Jπa1N =
∫

d4p
π2

1
(M2

π + p2)(M2
a1

+ p2)(M2
N + p2)

= 0.017M−2
π ,

JπVN =
∫

d4p
π2

1
(M2

π + p2)(M2
V + p2)(M2

N + p2)

= 0.024M−2
π , (3.2)

where p is Euclidean 4-momentum, MV = Mρ = Mω =
770 MeV [39] and Ma1 =

√
2Mρ [13].

At NC = 3 the cross-section for the M1-capture ac-
counting for the contribution of the effective interaction
eq. (3.1) amounts to

σ(np → Dγ)(Tn) =
1
v

(µp − µn)2
25
64

α

π2
QD C

2
NNMN ε

3
D

×
[

1 +
g2πNN
µp − µn

M2
π

8π2
αρ

π

(
Jπa1N +

3
2gA

JπVN

)]2

= 287.2 mb, (3.3)

where we have used the relation gπNN � gAMN/Fπ.
The theoretical value of the cross-section for the neutron-
proton radiative capture given by eq. (3.3) differs from
the experimental one by about 14%. This discrepancy we
should describe by taking into account the contribution of
the ∆(1232) resonance.

4 The ∆(1232) resonance

For the evaluation of the contribution of the ∆(1232)
resonance to the amplitude of the M1-capture in the
NNJL model we have to obtain the effective Lagrangian
Lnp→∆N
eff (x) describing the strong low-energy n + p → ∆

+ N transition. For this aim we should use the procedure
having been applied to the evaluation of the effective La-
grangian Lnp→npeff (x) given by eq. (1.15). In refs. [6,7] the
evaluation of the contribution of the ∆(1232) resonance
in terms of exchange currents has been carried out in
the one-pion exchange approximation. Thereby, following
refs. [6,7] we suppose to evaluate the effective Lagrangian
Lnp→∆N
eff (x) of the strong low-energy n + p → ∆ + N

transition in the one-pion exchange approximation. This
gives

Lnp→∆N
eff (x) = − i√

6
gπN∆

MN

gπNN
4M2

π

×
∫

d4z
∂

∂zϕ
δ(4)(z − x) {[∆̄+ω (z)Θω

ϕ n
c(x)]

× [n̄c(z)γ5p(x) + n̄c(x)γ5p(z)]
−[∆̄0ω(z)Θω

ϕ p
c(x)] [n̄c(z)γ5p(x) + n̄c(x)γ5p(z)]

+1 ⊗ γ5 → −γν ⊗ γνγ5}, (4.1)
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∫
d4xLnp→∆N→Dγ

eff (x) = −
∫

d4x1d
4x2d

4x3 〈T(Lnp→∆N
eff (x1)LnpD(x2)LγN∆(x3))〉 = − i

6

egV

M2
N

gπN∆

gπNN

gγN∆

gπNN

g3
πNN

4M2
π

×∫
d4x1d

4x2d
4x3

∫
d4z

∂

∂zϕ
δ(4)(z − x1) T([p̄c(x1)γ

5n(z) + p̄c(z)γ5n(x1)]D
†
µ(x2)F

αβ(x3))

×
{
〈0|T([∆̄+

ω (z)Θ
ω

ϕ nc(x1)][p̄c(x2)γ
µn(x2)− n̄c(x2)γ

µp(x2)][p̄(x3)γβγ
5∆+

α (x3)])|0〉

−〈0|T([∆̄0
ω(z)Θ

ω
ϕ pc(x)][p̄c(x2)γ

µn(x2)− n̄c(x2)γ
µp(x2)][n̄(x3)γβγ

5∆0
α(x3)])|0〉+ (γ5 ⊗ 1 → −γνγ

5 ⊗ γν)
}
=

i

3

egV

MN

gπN∆

gπNN

gγN∆

gπNN

g3
πNN

4M2
π

∫
d4x1d

4x2d
4x3

∫
d4z

∂

∂zϕ
δ(4)(z − x1) T([p̄c(x1)γ

5n(z) + p̄c(z)γ5n(x1)]D
†
µ(x2)F

αβ(x3))

×
{
〈0|T([∆̄+

ω (z)Θ
ω

ϕ nc(x1)][n̄c(x2)γ
µp(x2)][p̄(x3)γβγ

5∆+
α (x3)])|0〉

+〈0|T([∆̄0
ω(z)Θ

ω
ϕ pc(x1)][p̄c(x2)γ

µn(x2)][n̄(x3)γβγ
5∆0

α(x3)])|0〉+ (γ5 ⊗ 1 → −γνγ
5 ⊗ γν)

}
=

=
2

3

iegV

M2
N

gπN∆

gπNN

gγN∆

gπNN

g3
πNN

4M2
π

∫
d4x1d

4x2d
4x3

∫
d4z

∂

∂zϕ
δ(4)(z − x1)

{
T([p̄c(x1)γ

5n(z) + p̄c(z)γ5n(x1)]D
†
µ(x2)F

αβ(x3))

× 1

i
tr{Sαω(x3 − z)Θω

ϕ Sc
F(x1 − x2)γ

µSF(x2 − x3)γβγ
5} − T([p̄c(x1)γνγ

5n(z) + p̄c(z)γνγ
5n(x1)]D

†
µ(x2)F

αβ(x3))

× 1

i
tr{Sαω(x3 − z)Θω

ϕ γνSc
F(x1 − x2)γ

µSF(x2 − x3)γβγ
5}

}
. (4.3)

where we have kept only the terms contributing to the
transition of the np pair in the 1S0 state into the ∆N
state. Using then the phenomenological Lagrangian

LnpD(x)=− i gV[p̄c(x)γµn(x) − n̄c(x)γµp(x)]D†
µ(x)(4.2)

the effective Lagrangian describing the contribution of the
∆(1232) resonance to the low-energy transition n + p →
D + γ is defined by

see equation (4.3) above

Thus, the effective Lagrangian Lnp→∆N→Dγ
eff (x) is equal to

∫
d4xLnp→∆N→Dγ

eff (x) =
2
3
iegV
M2
N

gπN∆

gπNN

gγN∆

gπNN

g3πNN
4M2

π

×
∫

d4x1d4x2d4x3
∫

d4z
∂

∂zϕ
δ(4)(z − x1)

×
{

T([p̄c(x1)γ5n(z) + p̄c(z)γ5n(x1)]D†
µ(x2)Fαβ(x3))

×1
i
tr{Sαω(x3 − z)Θω

ϕ S
c
F(x1 − x2)γµSF(x2 − x3)γβγ

5}
−T([p̄c(x1)γνγ

5n(z)+p̄c(z)γνγ
5n(x1)]D†

µ(x2)Fαβ(x3))

× 1
i
tr{Sαω(x3 − z)Θω

ϕ γ
νSc
F(x1 − x2)γµ

×SF(x2 − x3)γβγ
5}

}
. (4.4)

In the momentum representation of the baryon Green
functions the effective Lagrangian eq. (4.4) reads

∫
d4xLnp→∆N→Dγ

eff (x) =
2
3
iegV
M2
N

gπN∆

gπNN

gγN∆

gπNN

g3πNN
4M2

π

×
∫

d4x1
∫

d4z
∂

∂zϕ
δ(4)(z − x1)

×
∫

d4x2d4k2
(2π)4

d4x3d4k3
(2π)4

e−ik2 · (x2 − x1)

×e−ik3 · (x3 − z){T([p̄c(x1)γ5n(z) + p̄c(z)γ5n(x1)]

×D†
µ(x2)Fαβ(x3))

∫
d4k1
π2i

eik1 · (x1 − z)

×tr{Sαω(k1 + k3)Θωϕ
1

MN − k̂1 + k̂2
γµ 1

MN − k̂1
γβγ5}

−T([p̄c(x1)γνγ
5n(z) + p̄c(z)γνγ

5n(x1)]D†
µ(x2)

×Fαβ(x3))
∫

d4k1
π2i

eik1 · (x1 − z) tr{Sαω(k1 + k3)Θωϕ

× 1

MN − k̂1 + k̂2
γµ 1

MN − k̂1
γβγ5}

}
. (4.5)

The effective Lagrangian eq. (4.5) defines the contribution
of the ∆(1232) resonance to the low-energy transition n
+ p → D + γ.

The matrix element of the neutron-proton radiative
capture caused by the contribution of the ∆(1232) reso-
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nance exchange is equal to

M(n + p → ∆N → D + γ) =

= − ie

2M2
N

gV
6π2

gπN∆

gπNN

gγN∆

gπNN

g3πNN
4M2

π

×[ūc(p2)γ5u(p1)] (kαe
∗
β(k) − kβe

∗
α(k)) e∗µ(kD)

×J µβα
5 (kD, k)

+
ie

2M2
N

gV
6π2

gπN∆

gπNN

gγN∆

gπNN

g3πNN
4M2

π

×[ūc(p2)γνγ
5u(p1)] (kαe

∗
β(k) − kβe

∗
α(k)) e∗µ(kD)

×J νµβα
5 (kD, k), (4.6)

where the structure functions J µβα
5 (kD,k) and J νµβα

5 (kD,k)
are defined by the momentum integrals

J µβα
5 (kD, k) =

=
∫

d4k1
π2i

tr{(k1 + kD)ϕSαω(k1 + k)Θωϕ

× 1

MN − k̂1 + k̂D
γµ 1

MN − k̂1
γβγ5},

J νµβα
5 (kD, k) =

=
∫

d4k1
π2i

tr{(k1 + kD)ϕSαω(k1 + k)Θωϕ γ
ν

× 1

MN − k̂1 + k̂D
γµ 1

MN − k̂1
γβγ5}. (4.7)

At leading order in the large NC expansion the structure
functions eq. (4.7) read

J µβα
5 (kD, k) =

4
3

(
Z − 1

2

)
iMN ε

µβαλ kDλ,

J νµβα
5 (kD, k) =

2
3

(
Z − 1

2

)
iM2

N ε
µβαν . (4.8)

We have neglected the mass difference between the masses
of the ∆(1232) resonance and the nucleon. The matrix
element of the low-energy transition n + p → D + γ caused
by the ∆(1232) resonance contribution is equal to

M∆(n + p → D + γ) =

e

2MN

gV
4π2

[(
1
2
− Z

)
8
9
gπN∆

gπNN

gγN∆

gπNN

g3πNN
4M2

π

]
εαβµνkα

×e∗β(k, λ)e∗µ(kD, λD)[ūc(p2)(2kDν −MNγν)γ5u(p1)] =

= e
5gV
8π2

[(
1
2
− Z

)
8
9
gπN∆

gπNN

gγN∆

gπNN

g3πNN
4M2

π

]

×(k × e ∗(k, λ)) · e ∗(kD, λD)[ūc(p2)γ5u(p1)]. (4.9)

In turn, the contribution of the nucleon tensor current [1]

δLnpD(x) =
gT

2MN
[p̄c(x)σµνn(x) − n̄c(x)σµνp(x)]D†

µν(x) (4.10)

does not depend on the parameter Z and reads

δM∆(n + p → D + γ) =

e
5gV
8π2

[
1
5
gT
gV

8
9
gπN∆

gπNN

gγN∆

gπNN

g3πNN
4M2

π

]

×(k × e ∗(k, λ)) · e ∗(kD, λD) [ūc(p2)γ5u(p1)]. (4.11)

The coupling constants gT and gV are connected by the
relation [1]

gT =

√
3
8
gV +O(1/

√
NC). (4.12)

The total amplitude of the neutron-proton radiative cap-
ture for thermal neutrons reads

M(n + p → D + γ) = e (µp − µn)
5gV
8π2

CNN

×(k × e ∗(k, λ)) · e ∗(kD, λD) [ūc(p2)γ5u(p1)]

×
[

1 +
g2πNN
µp − µn

M2
π

8π2
αρ

π

(
Jπa1N +

3
2gA

JπVN

)

+
1

µp − µn
1
5

√
3
8

1
CNN

8
9
gπN∆

gπNN

gγN∆

gπNN

g3πNN
4M2

π

+
1 − 2Z
µp − µn

1
CNN

4
9
gπN∆

gπNN

gγN∆

gπNN

g3πNN
4M2

π

]
. (4.13)

The total cross-section for the neutron-proton radiative
capture is then defined by

σ(np → Dγ)(p) =
1
v

(µp − µn)2
25
64

α

π2
QD C

2
NNMN ε

3
D

×
[

1 +
g2πNN
µp − µn

M2
π

8π2
αρ

π

(
Jπa1N +

3
2gA

JπVN

)

+
1

µp − µn
1
5

√
3
8

1
CNN

8
9
gπN∆

gπNN

gγN∆

gπNN

g3πNN
4M2

π

+
1 − 2Z
µp − µn

1
CNN

4
9
gπN∆

gπNN

gγN∆

gπNN

g3πNN
4M2

π

]2
. (4.14)

The numerical value of the cross-section amounts to

σ(np → Dγ)(Tn)=325.5 (1+0.246 (1 − 2Z))2 mb. (4.15)

Thus, the discrepancy of the theoretical cross-section and
the experimental value eq. (1.1) can by described by the
contribution of the ∆(1232) resonance. In order to fit
the experimental value of the cross-section we should set
Z = 0.473. This agrees with the experimental bound
|Z| ≤ 1/2 [18]. At Z = 1/2 that is favoured theoretically
[15] we get the cross-section σ(np → Dγ)(Tn) = 325.5 mb
agreeing with the experimental value with accuracy better
than 3%.

5 The photomagnetic disintegration of the
deuteron

The amplitude of the photomagnetic disintegration of the
deuteron γ + D → n + p is related to the amplitude of
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the neutron-proton radiative capture n + p → D + γ due
to time-reversal invariance and reads

M(γ + D → n + p) = e (µp − µn)
5gV
8π2

CNN (k × e(k, λ)) · e(kD, λD) [ū(p2)γ5uc(p1)]

×
[

1 +
g2πNN
µp − µn

M2
π

8π2
αρ

π

(
Jπa1N +

3
2gA

JπVN

)

+
1

µp − µn
1
5

√
3
8

1
CNN

8
9
gπN∆

gπNN

gγN∆

gπNN

g3πNN
4M2

π

+
1 − 2Z
µp − µn

1
CNN

4
9
gπN∆

gπNN

gγN∆

gπNN

g3πNN
4M2

π

]2

×ei δnp(p) sin δnp(p)
−anp p

1
1 + r2Dp2

. (5.1)

The cross-section defined by the amplitude eq. (5.1) is
then given by

σ(γD → np)(ω) = σ0

(
ω

εD

)

× 1(
1 − 1

2
rnpanpp

2
)2

+ a2npp
2

rDp

(1 + r2Dp2)2
, (5.2)

where p =
√
MN(ω − εD) is the relative momentum of the

np pair in the 1S0 state, ω is the energy of the photon,
and σ0 is equal to

σ0 = (µp − µn)2
25αQD
192π2

C2NN ε
3/2
D M

5/2
N

×
[

1 +
g2πNN
µp − µn

M2
π

8π2
αρ

π

(
Jπa1N +

3
2gA

JπVN

)

+
1

µp − µn
1
5

√
3
8

1
CNN

8
9
gπN∆

gπNN

gγN∆

gπNN

g3πNN
4M2

π

+
1 − 2Z
µp − µn

1
CNN

4
9
gπN∆

gπNN

gγN∆

gπNN

g3πNN
4M2

π

]2
= 7.10 mb.

(5.3)

The energy region of the dominance of the photomagnetic
disintegration of the deuteron is restricted by the con-
straint rDp =

√
(ω − εD)/εD � 1 or differently ω � εD =

2.225 MeV.
The numerical values of the cross-section for the pho-

tomagnetic disintegration of the deuteron at energies ω ≤
2 εD = 4.45 MeV read

σ(γD → np)(ω)
∣∣∣
ω=2.62MeV

= 0.358 (0.380) mb,

σ(γD → np)(ω)
∣∣∣
ω=2.76MeV

= 0.302 (0.327) mb,

σ(γD → np)(ω)
∣∣∣
ω=4.45MeV

= 0.094 (0.128) mb, (5.4)

where in parentheses we have adduced the theoretical val-
ues obtained by Chen and Savage in the EFT [10]. One can

see a reasonable agreement between the results obtained in
the NNJL model and the EFT. Thus, the spatial smearing
of the physical deuteron caused by the effective radius rD
and introduced in the NNJL model phenomenologically
in the form of the wave function eq. (2.16) describes well
the energy dependence of the cross-section for the photo-
magnetic disintegration of the deuteron at photon energies
far from threshold. Note that in the critical region of the
photon energies ω ≤ 2 εD = 4.45 MeV the cross-section
for the photomagnetic disintegration of the deuteron cal-
culated in the NNJL model falls steeper with ω than in the
EFT. However, in this energy region the dominant role is
attributed to the E1-transition which we have not taken
into account.

For the correct description of the experimental data
on the photodisintegration of the deuteron [40] (see also
Chen and Savage [10]):

σ(γD → np)exp(ω)
∣∣∣
ω=2.62MeV

= (1.300 ± 0.029) mb,

σ(γD → np)exp(ω)
∣∣∣
ω=2.76MeV

= (1.474 ± 0.032) mb,

σ(γD → np)exp(ω)
∣∣∣
ω=4.45MeV

= (2.430 ± 0.170) mb

(5.5)

one must include the contribution of the E1-transition
[10].

Since the cross-section for the photodisintegration of
the deuteron having been discussed above does not con-
tain the contribution of the E1-transition, our result can
be scarcely compared with the recent theoretical investiga-
tion of the photodisintegration of the deuteron carried out
by Anisovich and Sadovnikova [41] within the dispersion
relation approach based on the dispersion relation tech-
nique developed by Anisovich et al. [42]. This investiga-
tion represents a detailed analysis of the saturation of the
cross-section for the photodisintegration of the deuteron
by different intermediate states valid mainly for the pho-
ton energy region ω ≥ 50 MeV, where the contribution of
the E1-transition is important.

6 The amplitude of the solar proton burning

The analysis of the reaction p + p → D + e+ + νe within
the NNJL model we should start with the evaluation
of the effective Lagrangian Lpp→De+νe

eff (x) of the transition
p + p → D + e+ + νe. In the tree-meson approximation1

the effective Lagrangian Lpp→De+νe
eff (x) is defined by the

one-nucleon loop diagrams depicted in fig. 3. The detailed
evaluation of Lpp→De+νe

eff (x) is given in appendix.

1 Below the analysis of weak nuclear reactions is carried out
in the tree-meson approximation. The inclusion of chiral one-
meson loop corrections goes beyond the scope of this paper
and demands a separate publication.
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Fig. 3. One-nucleon loop diagrams describing the effective La-

grangian Lpp→De+νe
eff (x) of the low-energy transition p + p →

D + e+ + νe.

The result reads2

Lpp→De+νe
eff (x) = −igACNNMN

GV√
2

3gV
4π2

D†
µ(x)

×[p̄c(x)γ5p(x)] [ψ̄νe(x)γµ(1 − γ5)ψe(x)], (6.1)

where GV = GF cosϑC with GF = 1.166 × 10−11 MeV−2

and ϑC are the Fermi weak-coupling constant and the
Cabibbo angle cosϑC = 0.975.

For the derivation of the effective Lagrangian
Lpp→De+νe
eff (x) we have used the effective Lagrangian

LNN→NN
eff (x) responsible for low-energy transitions N +

N → N + N defined by eq. (1.17).
The matrix element of the transition p + p → D + e+

+ νe we define in the usual way∫
d4x 〈D(kD)e+(ke+)νe(kνe)|Lnp→De+νe

eff (x)|p(p1)p(p2)〉 =

(2π)4δ(4)(kD + ke+ + kνe − p1 − p2)
× M(n + p → D + e+ + νe)√

2E1V 2E2V 2EDV 2Ee+V 2EνeV
, (6.2)

where Ei (i = 1, 2,D, e+, νe) are the energies of the pro-
tons, the deuteron, the positron and the neutrino, V is the
normalization volume.

The wave functions of the initial |p(p1)p(p2)〉 and final
〈D(kD)e+(ke+)νe(kνe)| state we take in the usual form

|p(p1)p(p2)〉 =
1√
2
a†p(p1, σ1) a†p(p2, σ2)|0〉,

〈D(kD)e+(ke+)νe(kνe)| =
〈0|aD(kD, λD) ae+(ke+ , σ) aνe(kνe , σ

′), (6.3)

where a†n(p1, σ1) and a†p(p2, σ2) are the operators of cre-
ation of the protons. In turn, aD(kD, λD), ae+(ke+ , σe+)
and aνe(kνe , σνe) are the operators of annihilation of the
deuteron, the positron and the neutrino.

The effective Lagrangian eq. (6.1) defines the effective
vertex of the low-energy nuclear transition p + p → D +
e+ + νe

iM(p + p → D + e+ + νe) = gAMN CNNGV
3gV
4π2

e∗µ(kD)

×[ū(kνe)γµ(1 − γ5)v(ke+)][ūc(p2)γ5u(p1)], (6.4)
2 This result is obtained at zero contribution of the nucleon

tensor current (see appendix and discussion in the conclusion).

where e∗µ(kD, λD) is a 4-vector of a polarization of the
deuteron, u(kνe), v(ke+), u(p2) and u(p1) are the Dirac
bispinors of the neutrino, the positron and the protons,
respectively.

For the evaluation of the matrix element eq. (6.4) we
have used the wave functions of the protons in the form of
the plane waves. However, a real wave function of the pp
pair in the 1S0 state is defined by low-energy nuclear forces
and Coloumb repulsion. In order to take into account both
low-energy nuclear forces and Coulomb repulsion for the
relative movement of the pp pair in the 1S0 state we would
sum up an infinite series of one-proton bubbles. The ver-
tices of these one-nucleon bubbles are defined by

Vpp→pp(k′, k) = CNN ψ
∗
pp(k′ )

×[ū(p′2)γ
5uc(p′1)] [ūc(p2)γ5u(p1)]ψpp(k), (6.5)

where ψpp(k) and ψ∗
pp(k′ ) are the explicit Coulomb wave

functions of the relative movement of the protons taken
at zero relative distances, and k and k′ are relative 3-
momenta of the protons k = (p1 − p2)/2 and k ′ = (p ′

1 −
p ′
2)/2 in the initial and final states. The explicit form of
ψpp(k) we take following Kong and Ravndal [33] (see also
[43]):

ψpp(k) = e−π/4krC Γ
(

1 +
i

2krC

)
, (6.6)

where 2 rC = 2/MNα = 57.64 fm and α = 1/137 are the
Bohr radius of the pp pair in the 1S0 state and the fine-
structure constant. The squared value of the modulo of
ψpp(k) is given by

|ψpp(k)|2 = C20 (k) =
π

krC

1

eπ/krC − 1
, (6.7)

where C0(k) is the Gamow penetration factor [3,29,43].
By taking into account the contribution of the

Coulomb wave function and summing up an infinite se-
ries of one-proton bubbles the expression eq. (6.4) can be
recast into the form

see equation (6.8) on next page

where P = p1+p2 = (2
√
k2 +M2

N,0 ) is the 4-momentum
of the pp-pair in the center-of-mass frame; Q = aP +
bK = a (p1 + p2) + b (p1 − p2) is an arbitrary shift of
virtual momentum with arbitrary parameters a and b, and
in the center of mass frame K = p1 − p2 = (0, 2 k ). The
parameters a and b can be functions of k.

The evaluation of the momentum integral we would
carry out at leading order in the 1/MN expansion or dif-
ferently in the large NC expansion [1] due to proportion-
ality MN ∼ NC valid in QCD with SU(NC) gauge group
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iM(p + p → D+ e+ + νe) = gAMN CNN GV
3gV

4π2
e∗µ(kD) [ū(kνe)γ

µ(1− γ5)v(ke+)]

× [ūc(p2)γ
5u(p1)]ψpp(k)

1 +
CNN

16π2

∫
d4p

π2i
|ψpp(|p+Q |)|2tr

{
γ5 1

MN − p̂− P̂ − Q̂
γ5 1

MN − p̂− Q̂

} . (6.8)

at NC → ∞ [22]. As a result we obtain∫
d4p
π2i

|ψpp(|p + Q |)|2

tr
{
γ5

1
MN − p̂− P̂ − Q̂γ

5 1
MN − p̂− Q̂

}
=

−8 a (a+ 1)M2
N

+8 (b2 − a (a+ 1)) k2 − i 8πMN k |ψpp(k)|2 =

−8 a (a+ 1)M2
N

+8 (b2 − a (a+ 1)) k2 − i 8πMN k C
2
0 (k). (6.9)

Substituting eq. (6.9) in eq. (6.8), we get

iM(p + p → D + e+ + νe) = gAMN CNNGV
3gV
4π2

× e∗µ(kD) [ū(kνe)γµ(1 − γ5)v(ke+)]

×[ūc(p2)γ5u(p1)] e−π/4krC Γ
(

1 +
i

2krC

)
×

[
1 − a(a+ 1)

GπNN

2π2
M2
N +

CNN
2π2

×(b2 − a (a+ 1)) k2 − i CNNMN

2π
k C20 (k)

]−1
. (6.10)

In order to reconcile the contribution of low-energy elastic
pp scattering with low-energy nuclear phenomenology
[43] we should make a few changes. To this aim we should
rewrite eq. (6.10) in a more convenient form:

iM(p + p → D + e+ + νe) = gAMN CNNGV
3gV
4π2

× e∗µ(kD) [ū(kνe)γµ(1 − γ5)v(ke+)]

×[ūc(p2)γ5u(p1)] eiσ0(k) C0(k)

×
[
1 − a(a+ 1)

GπNN

2π2
M2
N +

CNN
2π2

×(b2 − a (a+ 1)) k2 − i CNNMN

2π
k C20 (k)

]−1
. (6.11)

We have denoted

e−π/4krC Γ
(

1 +
i

2krC

)
= eiσ0(k) C0(k) ,

σ0(k) = argΓ
(

1 +
i

2krC

)
, (6.12)

where σ0(k) is a pure Coulomb phase shift.

Now, let us rewrite the denominator of the amplitude
eq. (6.11) in the equivalent form{

cosσ0(k)
[
1− a(a+1)

CNN
2π2

M2
N+

CNN
2π2

(b2− a (a+1)) k2
]

− sinσ0(k)
CNNMN

2π
k C20 (k)

}
− i

{
cosσ0(k)

GπNNMN

2π

×k C20 (k) + sinσ0(k)
[
1 − a(a+ 1)

CNN
2π2

M2
N

+
CNN
2π2

(b2 − a (a+ 1)) k2
]}

=

1
Z

[
1− 1

2
aeppr

e
ppk

2+
aepp
rC

h(2krC) + i aepp k C
2
0 (k)

]
, (6.13)

where we have denoted

1
Z

[
1 − 1

2
aeppr

e
ppk

2 +
aepp
rC

h(2krC)
]

=

− sinσ0(k)
CNNMN

2π
k C20 (k) + cosσ0(k)

×
[
1 − a(a+ 1)

GπNN

2π2
M2
N +

CNN
2π2

(b2 − a (a+ 1)) k2
]
,

− 1
Z aepp k C

2
0 (k)=cosσ0(k)

CNNMN

2π
k C20 (k) + sinσ0(k)

×
[
1 − a(a+ 1)

CNN
2π2

M2
N+

CNN
2π2

(b2 − a (a+ 1)) k2
]
.

(6.14)

Here Z is a constant which we would remove by the
renormalization of the wave functions of the protons,
aepp = (−7.8196 ± 0.0026) fm and repp = 2.790 ± 0.014 fm
[44] are the S wave scattering length and the effective
range of pp scattering in the 1S0 state with the Coulomb
repulsion, and h(2krC) is defined by [43]

h(2krC) = −γ + ln(2krC) +
∞∑

n=1

1
n(1 + 4n2k2r2C)

. (6.15)

The validity of the relations eq. (6.14) assumes the depen-
dence of parameters a and b on the relative momentum
k.

After the changes eq. (6.13) and eq. (6.14) the ampli-
tude eq. (6.11) takes the form

iM(p + p → D + e+ + νe) = GV gAMN CNNGV
3gV
4π2

×e∗µ(kD) [ū(kνe)γµ(1 − γ5)v(ke+)]

× C0(k)

1 − 1
2
aeppr

e
ppk

2 +
aepp
rC

h(2krC) + i aepp k C
2
0 (k)

×Z [ūc(p2)γ5u(p1)]. (6.16)
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Renormalizing the wave functions of the protons√Zu(p2) → u(p2) and
√Zu(p1) → u(p1) we obtain the

amplitude of the solar proton burning

iM(p + p → D + e+ + νe) =

gAMN CNNGV
3gV
4π2

e∗µ(kD) [ū(kνe)γ
µ(1 − γ5)v(ke+)]

× C0(k)

1 − 1
2
aeppr

e
ppk

2 +
aepp
rC

h(2krC) + i aepp k C
2
0 (k)

×[ūc(p2)γ5u(p1)]FD(k2), (6.17)

where FD(k2) is given by eq. (2.16) and describes the spa-
tial smearing of the deuteron coupled to the pp pair in the
1S0 state.

The real part of the denominator of the amplitude eq.
(6.17) is in complete agreement with a phenomenological
relation [43]

ctgδepp(k) =
1

C20 (k) k

[
− 1
aepp

+
1
2
reppk

2 − 1
rC
h(2krC)

]
,

(6.18)

describing the phase shift δepp(k) of low-energy elastic pp
scattering in terms of the S wave scattering length aepp and
the effective range repp. Thus, we argue that the contribu-
tion of low-energy elastic pp scattering to the amplitude
of the solar proton burning is described in agreement with
low-energy nuclear phenomenology in terms of the S wave
scattering length aepp and the effective range repp taken
from the experimental data [44].

7 The astrophysical factor for the solar
proton burning

The amplitude eq. (6.17) squared, averaged over polar-
izations of the protons and summed over polarizations of
final particles reads

|M(p + p → D + e+ + νe)|2 =

G2V g
2
AM

6
N C

2
NN

54QD
π2

F 2D(k2)

× C20 (k)[
1 − 1

2
aeppr

e
ppk

2 +
aepp
rC

h(2krC)
]2

+ (aepp)2k2C40 (k)

×
(
Ee+Eνe −

1
3
ke+ · kνe

)
, (7.1)

where me = 0.511 MeV is the positron mass, and we have
used the relation g2V = 2π2QDM2

N.
The cross-section for the reaction p + p → D + e+ +

νe is defined by

σpp→De
+νe(Tpp) =

1
v

1
4E1E2

∫
|M(p + p → D + e+ + νe)|2

×(2π)4 δ(4)(kD + k� − p1 − p2)
× d3kD

(2π)32ED
d3ke+

(2π)32Ee+
d3kνe

(2π)32Eνe

, (7.2)

where v is a relative velocity of the pp pair and k� =
ke+ + kνe is a 4-momentum of the leptonic pair.

The integration over the phase volume of the final
De+νe state we perform in the non-relativistic limit∫

d3kD
(2π)32ED

d3ke+
(2π)32Ee+

d3kνe

(2π)32Eνe

(2π)4

×δ(4)(kD + k� − p1 − p2)
(
Ee+Eνe −

1
3
ke+ · kνe

)
=

1
32π3MN

∫ W+Tpp

me

√
E2e+ −m2e Ee+

×(W + Tpp − Ee+)2 dEe+ =
(W + Tpp)5

960π3MN
f(ξ), (7.3)

where W = εD − (Mn −Mp) = (2.225 − 1.293) MeV =
0.932 MeV and ξ = me/(W + Tpp). The function f(ξ) is
defined by the integral

f(ξ) = 30
∫ 1

ξ

√
x2 − ξ2 x (1 − x)2dx =

(1 − 9
2
ξ2 − 4 ξ4)

√
1 − ξ2

+
15
2
ξ4 ln

(
1 +

√
1 − ξ2
ξ

)∣∣∣∣∣
Tpp=0

= 0.222 (7.4)

and normalized to unity at ξ = 0.
Thus, the cross-section for the solar proton burning is

given by
see equation (7.5) on next page

The astrophysical factor Spp(Tpp) reads

see equation (7.6) on next page

At zero kinetic energy of the relative movement of the
protons Tpp = 0 the astrophysical factor Spp(0) is given
by

Spp(0) = α
9g2AG

2
VQDM

4
N

1280π4
C2NNW

5 f
(me
W

)
=

4.08 × 10−25 MeV b. (7.7)

The value Spp(0) = 4.08 × 10−25 MeV b agrees well with
the recommended value Spp(0) = 4.00×10−25 MeV b [29].

Unlike the astrophysical factor obtained by Kamion-
kowski and Bahcall [30], the astrophysical factor given by
eq. (7.7) does not depend explicitly on the S wave scat-
tering length of low-energy elastic pp scattering in the 1S0
state. This is due to the normalization of the wave func-
tion of the pp pair. After the summation of an infinite
series and by using the relation eq. (6.18) we obtain the
wave function of the pp pair in the 1S0 state in the form

ψpp(k) = ei δ
e
pp(k) sin δ epp(k)

−aeppkC0(k)
, (7.8)

that corresponds the normalization of the wave function
of the relative movement of the pp pair used by Schiavilla
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e−π/rC

√
MNTpp

v2
α
9g2

AG2
VQDM3

N

320π4
C2

NN (W + Tpp)
5 f

( me

W + Tpp

)

× F 2
D(MNTpp)[

1− 1

2
ae
ppr

e
ppMNTpp +

ae
pp

rC
h(2rC

√
MNTpp)

]2

+ (ae
pp)

2MNTppC
4
0 (

√
MNTpp)

× 1

1− e−π/rC
√

MNTpp

=
Spp(Tpp)

Tpp
e−π/rC

√
MNTpp . (7.5)

Spp(Tpp) = α
9g2

AG2
VQDM4

N

1280π4

C2
NN (W + Tpp)

5

1− e−π/rC
√

MNTpp

f
( me

W + Tpp

)

× F 2
D(MNTpp)[

1− 1

2
ae
ppr

e
ppMNTpp +

ae
pp

rC
h(2rC

√
MNTpp)

]2

+ (ae
pp)

2MNTppC
4
0 (

√
MNTpp)

. (7.6)

et al. [31]. For the more detailed discussion of this problem
we relegate readers to the paper by Schiavilla et al. [31] 3.

8 The reaction νe + D → e− + p + p

The evaluation of the amplitude of the reaction νe + D →
e− + p + p is analogous to that of the amplitude of the
solar proton burning. The result reads

iM(νe + D → e− + p + p) =

gAMN
GV√

2
3gV
2π2

CNN e
∗
µ(kD) [ū(ke−)γµ(1 − γ5)u(kνe)]
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×[ū(p2)γ5uc(p1)]FD(k2). (8.1)

The amplitude eq. (8.1) squared, averaged over polariza-
tions of the deuteron and summed over polarizations of
the final particles reads

|M(νe + D → e− + p + p)|2 =
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. (8.2)

where F+(Z,Ee−) is the Fermi function [45] describing
the Coulomb interaction of the electron with the nuclear
system having a charge Z. In the case of the reaction νe +
D → e− + p + p we have Z = 2. At α2Z2 � 1 the Fermi
function F+(Z,Ee−) reads [45]

F+(Z,Ee−) =
2πηe−

1 − e−2πηe−
, (8.3)

3 See the last paragraph of sect. 3 and the first paragraph of
sect. 5 of ref. [31].

where ηe− = Zα/ve− = ZαEe−/
√
E2e− −m2e− and ve− is

a velocity of the electron.

For the evaluation of the r.h.s. of eq. (8.2) we have also
used the expression for the astrophysical factor

Spp(0) =
9g2AG

2
VQDM

3
N

1280π4rC
C2NNm

5
e ΩDe+νe , (8.4)

where ΩDe+νe = (W/me)5f(me/W ) = 4.481 at W =
0.932 MeV. The function f(me/W ) is defined by eq. (7.4).

In the rest frame of the deuteron the cross-section for
the reaction νe + D → e− + p + p is defined by

σνeD→e−pp(Eνe) =
1

4MDEνe

∫
|M(νe + D → e− + p + p)|2

×1
2
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, (8.5)

where Eνe , E1, E2 and Ee− are the energies of the neu-
trino, the protons and the electron. The integration over
the phase volume of the (ppe−) state we perform in the
non-relativistic limit and in the rest frame of the deuteron,

see equation (8.6) on next page

where Te− is the kinetic energy of the electron, Eth is the
neutrino energy threshold: Eth = εD+me− (Mn−Mp) =
(2.225 + 0.511 − 1.293) MeV = 1.443 MeV. The function
Ωppe−(y), where y = Eνe/Eth and Eth = εD − (Mn −
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Mp) +me = 1.443 MeV, is determined by the integral
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where we have changed the variable Tpp = (Eνe − Eth)x.
The cross-section for the reaction νe + D → e− + p +

p is defined by

σνeD→e−pp(Eνe) =

Spp(0)
640rC
πΩDe+νe

(
MN

Eth

)3/2(
Eth
2me

)7/2
(y − 1)2Ωppe−(y)

= 3.69×105 Spp(0) (y−1)2Ωppe−(y), (8.8)

where Spp(0) is measured in MeV cm2. For
Spp(0) = 4.08 × 10−49 MeV cm2 eq. (7.7) the cross-
section σνeD→e−pp(Eνe) reads

σνeD→e−pp(Eνe) = 1.50 (y − 1)2Ωppe−(y) 10−43 cm2.

(8.9)

Recently the calculation of the cross-section for the reac-
tion νe + D → e− + p + p has been carried in ref. [46]
within the PMA and tabulated for the neutrino energies
ranging over the region from threshold up to 170 MeV.
Since our result is valid for much lower neutrino energies,

we give the numerical values of the cross-section only for
the energies from the region 4 MeV ≤ Eνe ≤ 10 MeV:

σνeD→e−pp(Eνe = 4 MeV) = 2.46 (1.577) × 10−43 cm2,

σνeD→e−pp(Eνe = 6 MeV) = 10.04 (6.239) × 10−43 cm2,

σνeD→e−pp(Eνe = 8 MeV) = 2.37 (1.463) × 10−42 cm2,

σνeD→e−pp(Eνe = 10 MeV) = 4.39 (2.708) × 10−43 cm2.

(8.10)

The data in parentheses are taken from Table 1 of ref. [46].
Thus, on the average the cross-section σνeD→e−pp(Eνe)
calculated in the NNJL model by a factor of 1.6 is larger
compared with the PMA ones.

Since the amplitude of the reaction νe + D → e− +
p + p is completely defined by the amplitude of the solar
proton burning p + p → D + e+ + νe that is described
in the NNJL model in agreement with other theoretical
approaches, our prediction for the cross-section for the
neutrino disintegration of the deuteron eq. (8.10) is a chal-
lenge to the experiments planned at SNO [35].

In order to compare the cross-section for the neutrino
disintegration of the deuteron νe + D → e− + p + p with
experimental data planned to be obtained by SNO Col-
laboration we should average it over the 8B solar neutrino
energy spectrum produced by the β decay 8B → 8Be∗
+ e+ + νe in the solar core. Using the 8B solar neu-
trino energy spectrum [47] and integrating over the region
5 MeV ≤ Eνe ≤ 15 MeV [48], where the lower bound is
related to the experimental threshold of experiments at
SNO and the upper one is defined by the kinematics of
the decay 8B → 8Be∗ + e+ + νe, we get

〈σνeD→e−pp(Eνe)〉Φ(8B) = 2.62 × 10−42 cm2. (8.11)

For the comparison of the theoretical cross-section with
the experimental one measured at SNO one should take
into account a possible decrease of the experimental value
in the case of the existence of neutrino flavour oscillations
[27,48].
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9 The astrophysical factor for the pep process

In the NNJL model the amplitude of the reaction p + e−
+ p → D + νe or the pep-process is related to the ampli-
tude of the solar proton burning p + p → D + e+ + νe eq.
(6.17) as well as to the amplitude of the neutrino disinte-
gration of the deuteron νe + D → e− + p + p. Indeed, the
effective Lagrangians Lpe−p→Dνe

eff (x), Lpp→De+νe
eff (x) and

LνeD→e−pp
eff (x) are defined by the anomaly of the one-

nucleon loop triangle AAV-diagrams with two axial-vector
(A) and one vector (V) vertices (see appendix). The am-
plitude of the pep-process reads
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The amplitude eq. (9.1) squared, averaged and summed
over polarizations of the interacting particles is defined by
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where F+(Z,Ee−) is the Fermi function given by eq. (8.3).
At low energies the cross-section σpe

−p→Dνe(Tpp) for
the pep-process can be determined as follows [49]

σpe
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1
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(9.3)

where g = 2 is the number of the electron spin states
and v is a relative velocity of the pp pair. The electron
distribution function n(ke−) can be taken in the form [45]

n(ke−) = eν̄ − Te−/kTc , (9.4)

where k = 8.617× 10−11 MeV K−1, Tc is a temperature of
the core of the Sun. The distribution function n(ke−) is
normalized by the condition

g

∫
d3ke−
(2π)3

n(ke−) = ne− , (9.5)

where ne− is the electron number density. From the nor-
malization condition eq. (9.5) we derive

eν̄ =
4π3 ne−

(2πme kTc)3/2
. (9.6)

The astrophysical factor Spep(0) is then defined by
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For the ratio Spep(0)/Spp(0) we obtain
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We have set fpp(0) = ΩDe+νe/30 = 0.149 [45] and the
function I(x) introduced by Bahcall and May [45] reads

I(x) =

∞∫
0

du e−u

1 − e−παx/
√
u
. (9.9)

The relation between the astrophysical factors Spep(0) and
Spp(0) given by eq. (9.8) is in complete agreement with
that obtained by Bahcall and May [45].

By virtue of the direct relation between the amplitudes
of the pep-process and the reaction for the neutrino dis-
integration of the deuteron νe + D → e− + p + p that
we have in the NNJL model the agreement with the re-
sult obtained by Bahcall and May [45] is on favour of our
predictions for the cross-section for the reaction νe + D
→ e− + p + p.

10 The reaction ν̄e + D → e+ + n + n

The effective Lagrangian Lν̄eD→e+nn
eff (x) of the low-energy

nuclear transition ν̄e + D → e+ + n + n we evaluate
by analogy with Lpp→De+ν̄e

eff (x) (see eq. (A.27)) of the ap-
pendix) through the one-nucleon loop exchanges and at
leading order in the large NC expansion. The effective La-
grangian Lν̄eD→e+nn

eff (x) is defined by the anomaly of the
one-nucleon loop triangle AAV-diagram as well as the ef-
fective Lagrangian Lpp→De+νe

eff (x). The result reads

Lν̄eD→e+nn
eff (x) = igAMNCNN

GV√
2

3gV
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×Dµ(x) [n̄(x)γ5nc(x)] [ψ̄νe(x)γµ(1 − γ5)ψe(x)]. (10.1)
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The amplitude of the reaction ν̄e + D → e+ + n + n we
obtain in the form

iM(ν̄e + D → e+ + n + n) =

− gAMN CNN
GV√

2
3gV
2π2

1
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2
rnnannk

2 + i ann k
FD(k2)

×eµ(kD) [v̄(kν̄e)γµ(1 − γ5)v(ke+)] [ū(p2)γ5uc(p1)], (10.2)

where the form factor FD(k2) describes a spatial smearing
of the deuteron eq. (2.16). The factor 1/(1− 1

2rnnannk
2 +

i ann k) gives the contribution of low-energy nuclear forces
to the relative movement of the nn pair in the 1S0 state.
The result is obtained by the summation of an infinite se-
ries of the one-neutron bubbles evaluated at leading order
in the large NC expansion. Since we work in the isotopical
limit, we set ann = anp = −23.75 fm and rnn = rnp =
2.75 fm. The recent experimental values of the S wave
scattering length and the effective range of low-energy
elastic nn scattering are equal to ann = (−18.8 ± 0.3) fm
and rnn = (2.75 ± 0.11) fm [50,51].

The amplitude eq. (10.2), squared, averaged over po-
larizations of the deuteron and summed over polarizations
of the final particles, reads
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The cross-section for the reaction ν̄e + D → e+ + n + n
is defined by

σν̄eD→e+nn(Eν̄e) =
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where ED, Eν̄e , E1, E2 and Ee+ are the energies of the
deuteron, the antineutrino, the neutrons and the positron.
The integration over the phase volume of the (nne+) state
we perform in the non-relativistic limit and in the rest

frame of the deuteron
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where Tnn is the kinetic energy of the nn pair in the 1S0
state, Te+ and me = 0.511 MeV are the kinetic energy
and the mass of the positron, y = Eν̄e/Eth and Eth is the
antineutrino energy threshold of the reaction ν̄e + D →
e+ + n + n: Eth = εD + me + (Mn −Mp) = (2.225 +
0.511 + 1.293) MeV = 4.029 MeV. The function Ωnnν̄e(y)
is defined by
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(10.6)

where we have changed the variable Tnn = (Eν̄e − Eth)x.
The function f(y) is normalized to unity at y = 1, i.e.
at threshold Eν̄e = Eth. Thus, the cross-section for the
reaction ν̄e + D → e+ + n + n reads

σν̄eD→e+nn(Eν̄e) = σ0 (y − 1)2Ωnnν̄e(y), (10.7)

where σ0 amounts to

σ0 = QD C
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)7/2(
2me
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)3/2
=

4.58 × 10−43 cm2. (10.8)

The experimental data on the antineutrino disintegration
of the deuteron are given in terms of the cross-section
averaged over the antineutrino energy spectrum [36]:

〈σν̄eD→e+nn(Eν̄e)〉exp = (9.83 ± 2.04) × 10−45 cm2.

(10.9)
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In order to average the theoretical cross-section eq. (10.7)
over the antineutrino spectrum we should use the spec-
trum given by Table YII of ref. [36]. This yields

〈σν̄eD→e+nn(Eν̄e)〉 = 11.56 × 10−45 cm2. (10.10)

The theoretical value eq. (10.10)4 agrees well with the
experimental one eq. (10.9).

11 The reactions νe(ν̄e) + D → νe(ν̄e) + n
+ p

The amplitude of the neutrino disintegration of the
deuteron caused by neutral weak current νe + D → νe
+ n + p evaluated through one-nucleon loop exchanges
and at leading order in the large NC expansion reads (see
eq. (A.30) of the appendix):

iM(νe + D → νe + n + p) =

− gAMN CNN
GF√

2
3gV
4π2

1

1 − 1
2
rnpanpk

2 + i anp k
FD(k2)

×eµ(kD) [ū(k′νe
)γµ(1 − γ5)u(kνe)][ū(p2)γ5uc(p1)]. (11.1)

The amplitude eq. (11.1) squared, averaged over polariza-
tions of the deuteron, summed over polarizations of the
nucleons reads

|M(νe + D → νe + n + p)|2 =
36
π2
QDg

2
AG

2
FC

2
NNM

6
NF

2
D(k2)(

1− 1
2
rnpanpk

2
)2

+a2npk
2

(
E′

νe
Eνe−

1
3
k′

νe
·kνe

)
. (11.2)

In the rest frame of the deuteron the cross-section for the
reaction νe + D → νe + n + p is defined by

σνeD→νenp(Eν̄e) =
1

4MDEνe

×
∫

|M(νe + D → νe + n + p)|2

×(2π)4 δ(4)(kD + kνe − p1 − p2 − k′νe
)

× d3p1
(2π)32E1

d3p2
(2π)32E2

d3k′νe

(2π)32E′
νe

. (11.3)

The integration over the phase volume of the (npνe) state
we perform in the non-relativistic limit and in the rest

4 This result is obtained at zero contribution of the nucleon
tensor current (see appendix and the discussion in the conclu-
sion).

frame of the deuteron,∫
d3p1

(2π)32E1
d3p2

(2π)32E2

d3k′νe

(2π)32E′
νe

×(2π)4 δ(4)(kD+ kνe−p1−p2−k′νe
)
(
EνeE

′
νe
− 1

3
kνe · k′

νe

)
× F 2D(MNTnp)(

1 − 1
2
rnpanpMNTnp

)2
+ a2npMNTnp

=

EνeM
3
N

210π3

(
Eth
MN

)7/2
(y − 1)7/2Ωnpνe(y). (11.4)

The function Ωnpνe(y), where y = Eν̄e/Eth and Eth =
εD = 2.225 MeV is threshold of the reaction, is defined by
the integral

Ωnpνe(y) =

105
16

1∫
0

dx
√
x (1 − x)2(

1 − 1
2
rnpanp
r2D

(y − 1)x
)2

+
a2np
r2D

(y − 1)x

× 1
(1 + (y − 1)x)2

, (11.5)

where we have changed the variable Tnp = (Eν̄e − Eth)x
and used the relation MNEth = 1/r2D at Eth = εD. The
function Ωnpνe(y) is normalized to unity at y = 1, i.e. at
threshold Eν̄e = Eth.

The cross-section for the reaction νe + D → νe + n +
p reads

σνeD→νenp(Eνe) = σ0 (y − 1)7/2Ωnpνe(y), (11.6)

where σ0 amounts to

σ0 = QD C
2
NN

3g2AG
2
FM

8
N

140π5

(
Eth
MN

)7/2

= 1.84 × 10−43 cm2. (11.7)

In our approach the cross-section for the disintegration
of the deuteron by neutrinos νe + D → νe + n + p
coincides with the cross-section for the disintegration of
the deuteron by antineutrinos ν̄e + D → ν̄e + n + p,
σνeD→νenp(Eνe) = σν̄eD→ν̄enp(Eν̄e). Therefore, we have an
opportunity to compare our result with the experimental
data on the disintegration of the deuteron by antineutri-
nos [36]. The experimental value of the cross-section for
the antineutrino disintegration of the deuteron ν̄e + D →
ν̄e + n + p averaged over the antineutrino spectrum reads
[36]

〈σν̄eD→ν̄enp(Eν̄e)〉exp=(6.08 ± 0.77) × 10−45 cm2. (11.8)

By using the antineutrino spectrum given by Table YII
of ref. [36] for the calculation of the average value of the
theoretical cross-section eq. (11.6) we obtain

〈σν̄eD→ν̄enp(Eν̄e)〉 = 6.28 × 10−45 cm2. (11.9)
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The theoretical value eq. (11.9)5 agrees well with the ex-
perimental one eq. (11.8).

The cross-section for the neutrino disintegration of the
deuteron νe + D → νe + n + p averaged over the 8B solar
neutrino spectrum [47] for energy region 5 MeV ≤ Eνe ≤
15 MeV is given by

〈σνeD→νenp(Eνe)〉Φ(8B) = 1.85 × 10−43 cm2. (11.10)

This result can be directly compared with the experimen-
tal data obtained by SNO, since the averaged value for
the cross-section for the reaction νe + D → νe + n + p
caused by the neutral weak current should not depend on
whether neutrino flavours oscillate or not [27,48], of course
if no sterile neutrinos exist.

12 Conclusion

We have considered the description of a dynamics of
low-energy nuclear forces within the Nambu-Jona-Lasinio
model of light nuclei (the NNJL model) for low-energy
electromagnetic and weak nuclear reactions with the
deuteron. We have shown that the NNJL model enables
to describe in a reasonable agreement with both experi-
mental data and other theoretical approaches all variety
of low-energy electromagnetic and weak nuclear reactions
with the deuteron in the final or initial state coupled to
a nucleon-nucleon (NN) pair in the 1S0 state. In the bulk
the reaction rates for the neutron-proton radiative capture
n + p → D + γ for thermal neutrons, the photomagnetic
disintegration of the deuteron γ + D → n + p, the solar
proton burning p + p → D + e+ + νe, the pep-process p
+ e− + p → D + νe, the disintegration of the deuteron
by neutrinos and antineutrinos caused by charged νe + D
→ e− + p + p and ν̄e + D → e+ + n + n and neutral
νe(ν̄e) + D → νe(ν̄e) + n + p weak currents are calcu-
lated in agreement with other theorical approaches and
experimental data.

When matching our results with those obtained in the
PMA we would like to emphasize a much more simple
description of the NN interaction responsible for the tran-
sition N + N → N + N and a substantial simplification
of the evaluation of matrix elements of low-energy nu-
clear transitions near thresholds of the reactions where
the NN pair in the 1S0 state is produced or absorbed
with a relative momentum p comparable with zero. Such
a simplification is rather clear in the NNJL model where
with a good accuracy the deuteron can be considered
within a quantum field-theoretic approach as a point-
like particle. Indeed, the spatial region of the localiza-
tion of the NN pair is of order of O(1/p). Near thresh-
olds the effective radius of the deuteron rD = 4.319 MeV
is much smaller than 1/p, rD � 1/p. This yields that
the NN pair does not feel the spatial smearing of the
deuteron and couples to the deuteron as to a point-like

5 This result is obtained at zero contribution of the nucleon
tensor current (see appendix and the discussion in the conclu-
sion).

particle. A correct description of strong interactions of
the point-like deuteron coupled to the NN pair in the
1S0 state is guaranteed then by the one-nucleon loop ex-
changes with dominant contributions of the nucleon-loop
anomalies. This implies that the effective Lagrangians
Lnp→Dγ
eff (x), Lpp→De+νe

eff (x), LνeD→e−pp
eff (x), Lpe−p→Dνe

eff (x),
Lν̄eD→e+nn
eff (x) and Lν̄eD→ν̄enp

eff (x) are well defined. Thus,
the procedure of the derivation of effective Lagrangians of
low-energy nuclear transitions in the NNJL model treating
the deuteron as a point-like particle coupled to nucleons
and other particles through one-nucleon loop exchanges
seems to be good established. We argue that the appli-
cation of this procedure should get correct results for the
derivation of effective Lagrangians of any other low-energy
nuclear transitions, effective vertices, of nuclear reactions.

Some problems occur for the evaluation of the ampli-
tudes of nuclear reactions demanding the continuation of
matrix elements of low-energy nuclear transitions defined
by the effective Lagrangians to the energy region far from
thresholds.

The continuation of matrix elements of low-energy nu-
clear transitions demands in the NNJL model: 1) the spa-
tial smearing of the NN pair in the 1S0 state and 2) the
spatial smearing of the deuteron caused by the finite value
of the effective radius rD. The spatial smearing of the NN
pair in the 1S0 state can be carried out by a summa-
tion of an infinite series of one-nucleon bubbles describing
rescattering or differently a relative movement of the NN
pair either in an initial or a final state of a nuclear reac-
tion. The result of the NN rescattering can be expressed in
terms of S wave scattering lengths and effective ranges in
complete agreement with nuclear phenomenology of low-
energy elastic NN scattering in the 1S0 state. However,
for the description of the spatial smearing of the deuteron
the abilities of the NNJL model are rescticted and most
what one can do at present level of the development of the
model is to introduce the spatial smearing of the deuteron
phenomenologically in the form of the Fourier transform of
the approximate 3S1 wave function of the deuteron nor-
malized to unity at p = 0: FD(p2) = 1/(1 + r2Dp

2). We
have chosen a simplest form of the spatial smearing of the
deuteron. Of course, FD(p2) can be taken in the more com-
plicated form of the Fourier transform of the explicit wave
function of the deuteron. Of course, such a dependence is
not absolute and the spatial smearing of the deuteron can
be taken into account in the form of phenomenological
form factors as it has been done by Mintz [52], for exam-
ple.

We would like to emphasize that the cross-section for
the M1-capture n + p → D + γ for thermal neutrons
has been calculated by accounting for the contributions
of chiral one-meson loop corrections and the ∆(1232) res-
onance. The total cross-section for the M1-capture has
been found dependent on the parameter Z defining the
πN∆ coupling constant off-mass shell of the ∆(1232) res-
onance: σ(np → Dγ)(Tn) = 325.5 (1 + 0.246 (1− 2Z))2 mb
eq. (4.15). In order to fit the experimental value of the
cross-section we should set Z = 0.473. This agrees with
the experimental bound |Z| ≤ 1/2 [18]. At Z = 1/2
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the contribution of the ∆(1232) resonance to the ampli-
tude of the M1-capture is defined only by the nucleon
tensor current. Setting Z = 1/2 that is favoured theo-
retically [15] we calculate the cross-section for the M1-
capture σ(np → Dγ)(Tn) = 325.5 mb agreeing with the
experimental data with accuracy better than 3%.

When matching our result for the cross-section
for the M1-capture with the recent one obtained in
the EFT approach by Chen, Rupak and Savage [9]:
σ(np → Dγ)(Tn) = (287.1 + 6.51	πL1) mb (see eq. (3.49)
of ref. [9]), we accentuate the dependence of the cross-
section on the parameter 	πL1 undefined in the approach.
This parameter has to be fixed from the experimental
data [9]. In the NNJL model the parameter 	πL1 can
be expressed in terms of the Z parameter as follows:
	πL1 = 5.90 + 24.60 (1 − 2Z) + 3.03 (1 − 2Z)2. Thus, in
the NNJL model the parameter 	πL1 acquires a distinct
meaning of the contribution of the ∆(1232) resonance.

The obtained result for the M1-capture n + p → D +
γ we have applied to the analysis of the photomagnetic
disintegration of the deuteron γ + D → n + p. Due to
time-reversal invariance the cross-section for the photo-
magnetic disintegration of the deuteron can be directly
expressed through the cross-section for the M1-capture.
We have compared the numerical values of the cross sec-
tion σ(γD → np)(ω) calculated in the NNJL model with
the results obtained by Chen and Savage [10] and found
a good agreement. Nevertheless, it should be empha-
sized that in the critical region of the photon energies
ω ≤ 2 εD = 4.45 MeV restricting the energy region of
the dominance of the photomagnetic disintegration of the
deuteron the cross-section calculated in the NNJL model
falls steeper than the cross-section obtained in the EFT.
However, in this region the dominant role should be at-
tributed to the E1-transition [10], which we have not con-
sidered. The comparison of our results on the photomag-
netic disintegration of the deuteron with the experimental
data demands the inclusion of the E1-transition as well.
This is planned in our forthcoming publications.

The effective coupling constants of low-energy weak
transitions p + p → D + e+ + νe, p + e− + p → D + νe,
νe + D → e− + p + p, ν̄e + D → e+ + n + n and νe(ν̄e)
+ D → νe(ν̄e) + n + p have been found dependent on an
arbitrary parameter ξ̄ in the form gV → gV (1 + ξ̄) caused
by the contribution of the nucleon tensor current [1].

Since at ξ̄ = 0 we get the value of the astrophysical fac-
tor Spp(0) = 4.08 × 10−25 MeV b in complete agreement
with the recommended one Spp(0) = 4.00 × 10−25 MeV b
related to the Standard Solar Model [27,28], any non-
zero value of ξ̄ should lead to an Alternative Solar Model
(ASM). The problem of the formulation of the ASM goes
beyond the scope of this paper. Therefore, in order to
dwell within the Standard Solar Model [27,28] we have to
set ξ̄ = 0.

Setting ξ̄ = 0 we have shown that all low-energy weak
nuclear reactions of astrophysical interest i) the solar pro-
ton burning p + p → D + e+ + νe, ii) the pep-process p +
e− + p → D + νe and iii) the disintegration of the deuteron
by neutrinos and antineutrinos caused by charged νe + D

→ e− + p + p and ν̄e + D → e+ + n + n and neutral
νe(ν̄e) + D → νe(ν̄e) + n + p weak currents are described
in the bulk in agreement with other theorical approaches
and experimental data. The effective Lagrangians of low-
energy weak nuclear transitions p + p → D + e+ + νe,
p + e− + p → D + νe, νe + D → e− + p + p, ν̄e + D
→ e+ + n + n and νe(ν̄e) + D → νe(ν̄e) + n + p are
determined by the anomaly of the one-nucleon loop trian-
gle AAV-diagrams. This confirms the statement argued in
the NNJL model concerning the dominant role of the one-
nucleon loop anomalies for the description of low-energy
nuclear forces within a quantum field theoretic approach.

We have shown that the contributions of low-energy
elastic pp scattering in the 1S0 state with the Coulomb
repulsion to the amplitudes of the reactions p + p → D +
e+ + νe, νe + D → e− + p + p and p + e− + p → D + νe
are described in the NNJL model in full agreement with
low-energy nuclear phenomenology in terms of the S wave
scattering length and the effective range. The amplitude
of low-energy elastic pp scattering has been obtained by
summing up an infinite series of one-proton loop diagrams
and evaluating the result of the summation at leading or-
der in the large NC expansion. The same method has been
applied to the evaluation of the contribution of low-energy
nuclear forces to the relative movements of the nn and np
pairs, respectively, for the reactions ν̄e + D → e+ + n +
n and νe(ν̄e) + D → νe(ν̄e) + n + p. This has given the
amplitudes of low-energy elastic nn and np scattering de-
scribed in terms of S wave scattering lengths and effective
ranges in agreement with low-energy nuclear phenomenol-
ogy [26] as well.

The astrophysical factor Spep(0) for the pep-process, p
+ e− + p → D + νe, evaluated relative to Spp(0) is found
in full agreement with the result obtained by Bahcall and
May [45].

The cross-sections for the antineutrino disintegra-
tion of the deuteron caused by charged ν̄e + D →
e+ + n + n and neutral ν̄e + D → ν̄e + n +
p weak currents and averaged over the antineutrino
spectrum 〈σν̄eD→e+nn(Eν̄e)〉 = 11.56 × 10−45 cm2 and
〈σν̄eD→ν̄enp(Eν̄e)〉 = 6.28 × 10−45 cm2 agree well with re-
cent experimental data

〈σν̄eD→e+nn(Eν̄e)〉exp = (9.83 ± 2.04) × 10−45 cm2,

〈σν̄eD→ν̄enp(Eν̄e)〉exp = (6.08 ± 0.77) × 10−45 cm2

obtained by the Reines’s experimental group [36].
The cross-sections for the reactions ν̄e + D → e+ + n

+ n and ν̄e + D → ν̄e + n + p have been recently calcu-
lated by Butler and Chen [53] in the EFT approach. The
obtained results have been written in the following general
form σ = (a+bL1,A)×10−42 cm2 (see Table I of ref. [53]),
where a and b are the parameters which have been calcu-
lated in the approach, whereas L1,A is a free one. In the
NNJL model the appearance of the free parameter is re-
lated to the contribution of the nucleon tensor current [1]
that effectively leads to the change of the coupling con-
stant gV → gV (1 + ξ̄), where ξ̄ is an arbitrary parameter.
The best agreement with the recommended value of the as-
trophysical factor for the solar proton burning [29] and the
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contemporary experimental data [36] on the cross-sections
for the antineutrino disintegration of the deuteron ν̄e + D
→ e+ + n + n and ν̄e + D → ν̄e + n + p caused by
charged and neutral weak current, respectively, we obtain
at ξ̄ = 0 (see appendix).

We would like to emphasize that the contribution of
the∆(1232) resonance to the amplitudes of the low-energy
weak nuclear reactions p + p → D + e+ + νe, p + e− + p
→ νe + D, νe + D → e− + p + p, ν̄e + D → e+ + n + n and
ν̄e + D → ν̄e + n + p can be neglected. In fact, the con-
tribution of the ∆(1232) resonance to the amplitudes of
these reactions is of order of the momentum of the leptonic
pair. This is due to the gauge invariance of the effective
interactions ∆NW+ and ∆NZ which should be propor-
tional to W+

µν = ∂µW
+
ν − ∂νW

+
µ and Zµν = ∂µZν − ∂νZµ,

respectively. Since the amplitudes of the low-energy weak
nuclear reactions under consideration are defined by the
Gamow-Teller transitions, the terms proportional to the
momentum of the leptonic pair give negligible small con-
tributions. Thus, the cross-sections for low-energy weak
nuclear reactions enumerated above do not depend prac-
tically on the uncertainties of the parameter Z.

This distinguishes low-energy weak nuclear reactions
with the deuteron from the neutron-proton radiative cap-
ture analysed in the NNJL model. Unlike the low-energy
weak nuclear reactions the contribution of the ∆(1232)
resonance to the amplitude of the neutron-proton radia-
tive capture is essential for the explanation of the experi-
mental data.

The cross-section for the reaction νe + D → e− + p + p
has been evaluated with respect to Spp(0). We have found
an enhancement of the cross-section by a factor of 1.6 on
the average relative to the results obtained in the PMA.
It would be important to verify this result for the reac-
tion νe + D → e− + p + p in solar neutrino experiments
planned by SNO. Indeed, first, this should provide an ex-
perimental study of Spp(0) and, second, the cross-sections
for the antineutrino disintegration of the deuteron caused
by charged ν̄e + D → e+ + n + n and neutral ν̄e + D
→ ν̄e + n + p weak currents have been found in good
agreement with recent experimental data [36].

For the comparison of the cross-sections for the reac-
tions νe + D → e− + p + p and νe + D → νe + n +
p caused by charged and neutral weak currents, respec-
tively, we have averaged the cross-sections over the 8B
solar neutrino energy spectrum at energy region 5 MeV ≤
Eνe ≤ 15 MeV, where the lower bound is related to the
experimental threshold of the experiments at SNO and
the upper one is defined by the kinematics of the β decay
8B → 8Be∗ + e+ + νe being the source of the 8B neutrinos
in the solar core. We have obtained

〈σνeD→e−pp(Eνe)〉Φ(8B) = 2.62 × 10−42 cm2,

〈σνeD→νenp(Eνe)〉Φ(8B) = 1.85 × 10−43 cm2.

The experimental value for the cross-section for the reac-
tion νe + D → e− + p + p caused by the charged weak
current can, in principle, differ from the theoretical one
due to a possible contribution of the neutrino flavour os-
cillations [27,48]. In turn, the averaged value of the cross-

section for the reaction νe + D → νe + n + p caused
by the neutral weak current should be directly compared
with the experimental data, since it should not depend
on whether neutrino flavours oscillate or not. Of course,
the former is valid only if there is no so-called sterile neu-
trino [27,48] having no interactions with Standard Model
particles [39].

Concluding the paper we would like to emphasize that
the NNJL model conveys the idea of a dominant role of
one-fermion loop (one-nucleon loop) anomalies from ele-
mentary particle physics to the nuclear one. This is a new
approach to the description of low-energy nuclear forces in
physics of light nuclei. In spite of the fact that almost 30
years have passed after the discovery of one-fermion loop
anomalies and application of these anomalies to the evalu-
ation of effective chiral Lagrangians of low-energy interac-
tions of hadrons, in nuclear physics fermion-loop anoma-
lies have not been applied to the analysis of low-energy
nuclear interactions and properties of light nuclei. The
contributions of one-nucleon loop anomalies are strongly
related to high-energy NN̄ fluctuations of virtual nucleon
fields [1,54]. An important role of NN̄ fluctuations for the
correct description of low-energy properties of finite nu-
clei has been understood in ref. [55]. Moreover, NN̄ fluc-
tuations have been described in terms of one-nucleon loop
diagrams within quantum field theoretic approaches, but
the contributions of one-nucleon loop anomalies have not
been considered. The NNJL model allows to fill this blank.
Within the framework of the NNJL model we aim to un-
derstand, in principle, the role of nucleon-loop anomalies
for the description of a dynamics of low-energy nuclear
forces at the quantum field theoretic level.

We are grateful to Prof. M. Kamionkowski for helpful remarks
and encouragement for further applications of the expounded
in the paper technique to the evaluation of the astrophysical
factor for pp fusion and the cross-section for the neutrino dis-
integration of the deuteron νe + D → e− + p + p by account-
ing for the Coulomb repulsion between the protons. We thank
Prof. J. N. Bahcall for discussions concerning the 8B neutrino
energy spectrum and experiments at SNO. We thank Dr. V.
A. Sadovnikova for many helpful and interesting discussions.
We thank Dr. J. Beacom for calling our attention to the ex-
perimental data [36]. Discussions of the experimental data [36]
with Prof. H. Sobel and Dr. L. Price are greatly appreciated.

Appendix A. The effective Lagrangian of the
transition p + p → D + e+ + νe

The reaction p + p → D + e+ + νe runs through the
intermediate W-boson exchange, p + p → D + W+ → D +
e+ + νe. In the NNJL model we determine this transition
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in terms of the following effective interactions [1,39]:

LnpD(x) = −igV[p̄c(x)γµn(x) − n̄c(x)γµp(x)]D†
µ(x),

Lpp→ppeff (x) =
1
2
CNN {[p̄(x) γµγ5pc(x)] [p̄c(x) γµγ

5p(x)]

+[p̄(x) γ5pc(x)] [p̄c(x) γ5p(x)]},
LnpW(x)=− gW

2
√

2
cosϑC [n̄(x)γν(1 − gAγ5)p(x)]W−

ν (x).

(A.1)

The transition W+ → e+ + νe is defined by the Lagrangian
[39]

Lνee+W(x)=− gW

2
√

2
[ψ̄νe(x)γν(1 − γ5)ψe(x)]W+

ν (x).

(A.2)

The electroweak coupling constant gW is connected
with the Fermi weak constant GF and the mass of the
W-boson MW through the relation [39]

g2W
8M2

W

=
GF√

2
. (A.3)

For the evaluation of the effective Lagrangian
Lpp→De+νe
eff (x) it is convenient to use the interaction

LnpW(x) = [n̄(x)γν(1 − gAγ5)p(x)]W−
ν (x) (A.4)

and for the description of the subsequent weak transition
W+ → e+ + νe to replace the operator of the W-boson
field by the operator of the leptonic weak current

W−
ν (x) → −GV√

2
[ψ̄νe(x)γν(1 − γ5)ψe(x)], (A.5)

where GV = GF cosϑC.
The S matrix describing the transitions like p + p →

D + W+ is defined by

S = Tei
∫
d4x [LnpD(x) + LnpW(x) + Lpp→ppeff (x) + . . . ]

(A.6)

where T is the time-ordering operator and the ellipses
denote the contribution of interactions irrelevant for the
problem.

For the evaluation of the effective Lagrangian
Lpp→DW+

eff (x) we have to consider the third-order term of
the S-matrix which reads

S(3) =
i3

3!

∫
d4x1d4x2d4x3 T([LnpD(x1) + LnpW(x1)

+Lpp→ppeff (x1) + . . . ] [LnpD(x2) + LnpW(x2)
+Lpp→ppeff (x2) + . . . ] [LnpD(x3) + LnpW(x3)

+Lpp→ppeff (x3) + . . . ]) = −i
∫

d4x1d4x2d4x3

×T(Lpp→ppeff (x1)LnpD(x2)LnpW(x3)) + . . . (A.7)

The ellipses denote the terms which do not contribute
to the transition p + p → D + W+ and the interaction
LnpW(x). The S-matrix element S(3)pp→DW+ describing the
transition p + p → D + W+ we determine as follows:

S(3)pp→DW+ =

−i
∫

d4x1d4x2d4x3 T(Lpp→ppeff (x1)LnpD(x2)LnpW(x3)).

(A.8)

For the derivation of the effective Lagrangian
Lpp→DW+

eff (x) from the S-matrix element eq. (A.8)
we should make all necessary contractions of the op-
erators of the proton and the neutron fields. These
contractions we denote by the brackets as

〈S(3)pp→DW+〉 = −i
∫

d4x1d4x2d4x3 ×
〈T(Lpp→ppeff (x1)LnpD(x2)LnpW(x3))〉. (A.9)

Now the effective Lagrangian Lpp→DW+

eff (x) related to the
S-matrix element 〈S(3)pp→DW+〉 can be defined by

〈S(3)pp→DW+〉 = i

∫
d4xLpp→DW+

eff (x) =

−i
∫

d4x1d4x2d4x3 〈T(Lpp→ppeff (x1)LnpD(x2)LnpW(x3))〉.
(A.10)

In terms of the operators of the interacting fields the ef-
fective Lagrangian Lpp→DW+

eff (x) reads

∫
d4xLpp→DW+

eff (x) =

−
∫

d4x1d4x2d4x3〈T(Lpp→ppeff (x1)LnpD(x2)LnpW(x3))〉=

−1
2
CNN × (−igV) × (−gA)

×
∫

d4x1d4x2d4x3 T([p̄c(x1) γαγ
5p(x1)]D†

µ(x2)W−
ν (x3))

×〈0|T([p̄(x1)γαγ5pc(x1)][p̄c(x2)γµn(x2)−n̄c(x2)γµp(x2)]

×[n̄(x3)γνγ5p(x3)])|0〉 − 1
2
CNN × (−igV) × (−gA)

×
∫

d4x1d4x2d4x3 T([p̄c(x1)γ5p(x1)]D†
µ(x2)W−

ν (x3))

×〈0|T([p̄(x1)γ5pc(x1)][p̄c(x2)γµn(x2) − n̄c(x2)γµp(x2)]
×[n̄(x3)γνγ5p(x3)])|0〉. (A.11)

Since p + p → D + W+ is the Gamow-Teller transition,
we have taken into account the W-boson coupled to the
axial-vector nucleon current.
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Due to the relation n̄c(x2)γµp(x2) = −p̄c(x2)γµn(x2)
the r.h.s. of eq. (A.11) can be reduced as follows∫

d4xLpp→DW+

eff (x) = −
∫

d4x1d4x2d4x3

×〈T(Lpp→ppeff (x1)LnpD(x2)LnpW(x3))〉 =

×CNN × (−igV) × gA

∫
d4x1d4x2d4x3

×T([p̄c(x1)γαγ
5p(x1)]D†

µ(x2)W
−
ν (x3))〈0|T([p̄(x1)γαγ5pc(x1)]

×[p̄c(x2)γµn(x2)][n̄(x3)γνγ5p(x3)])|0〉 + CNN × (−igV)

×gA
∫

d4x1d4x2d4x3T([p̄c(x1)γ5p(x1)]D†
µ(x2)W−

ν (x3))

×〈0|T([p̄(x1)γ5pc(x1)][p̄c(x2)γµn(x2)][n̄(x3)γνγ5p(x3)])|0〉.
(A.12)

Making the necessary contractions we arrive at the ex-
pression∫

d4xLpp→DW+

eff (x) = −
∫

d4x1d4x2d4x3

〈T(Lpp→ppeff (x1)LnpD(x2)LnpW(x3))〉 =

2 × CNN × (−igV) × gA

∫
d4x1d4x2d4x3

×T([p̄c(x1) γαγ
5p(x1)]D†

µ(x2)W−
ν (x3))

× (−1) tr{γαγ5(−i)Sc
F (x1 − x2)γµ(−i)

×SF (x2 − x3)γνγ5(−i)SF (x3 − x1)}
+2 × CNN × (−igV) × gA

∫
d4x1d4x2d4x3

×T([p̄c(x1)γ5p(x1)]D†
µ(x2)W−

ν (x3))

× (−1) tr{γ5(−i)Sc
F (x1 − x2)γµ(−i)

×SF (x2 − x3)γνγ5(−i)SF (x3 − x1)}, (A.13)

where the combinatorial factor 2 takes into account the
fact that the protons are identical particles in the nucleon
loop.

In the momentum representation of the Green func-
tions we get∫

d4xLpp→DW+

eff (x) =

−i gACNN gV8π2

∫
d4x1

∫
d4x2d4k2

(2π)4
d4x3d4k3

(2π)4

×e−ik2·(x2−x1)e−ik3·(x3−x1)

×T([p̄c(x1) γαγ
5p(x1)]D†

µ(x2)W−
ν (x3))Jαµν(k2, k3;Q)

−i gACNN gV8π2

∫
d4x1

∫
d4x2d4k2

(2π)4
d4x3d4k3

(2π)4

×e−ik2 · (x2 − x1)e−ik3 · (x3 − x1)
×T([p̄c(x1) γ5p(x1)]D†

µ(x2)W−
ν (x3)) Jµν(k2, k3;Q).

(A.14)

The structure functions J αµν(k2, k3;Q) and
J µν(k2, k3;Q) are defined by the momentum integrals

see equations (A.15) on next page

We have introduced a 4-vector Q = a k2 + b k3 caused by
an arbitrary shift of a virtual momentum with arbitrary
parameters a and b.

In order to obtain the effective Lagrangian
Lpp→De+νe
eff (x) of the transition p + p → D + e+ +
νe we have to replace the operator of the W-boson field
by the operator of the leptonic weak current eq. (A.5):

∫
d4xLpp→De+νe

eff (x) =

i gACNN
GV√

2
gV
8π2

∫
d4x1

∫
d4x2d4k2

(2π)4
d4x3d4k3

(2π)4

×e−ik2 · (x2 − x1)e−ik3 · (x3 − x1)
×T([p̄c(x1) γαγ

5p(x1)]D†
µ(x2)

×[ψ̄νe(x3)γν(1 − γ5)ψe(x3)])Jαµν(k2, k3;Q)

+i gACNN
GV√

2
gV
8π2

∫
d4x1

∫
d4x2d4k2

(2π)4
d4x3d4k3

(2π)4

×e−ik2 · (x2 − x1)e−ik3 · (x3 − x1)
×T([p̄c(x1) γ5p(x1)]D†

µ(x2)

×[ψ̄νe(x3)γν(1 − γ5)ψe(x3)])Jµν(k2, k3;Q). (A.16)

Thus, the problem of the evaluation of the effective La-
grangian of the transition p + p → D + e+ + νe reduces
itself to the problem of the evaluation of the structure
functions eq. (A.15). The momentum k3 is related to the 4-
momentum of the leptonic pair. Due to the Gamow-Teller
type of the transition p + p → D + W+ the contribu-
tion proportional to the 4-momentum of the leptonic pair
turns out to be much smaller with respect to the contri-
bution proportional to the 4-momentum of the deuteron
k2. Therefore, without loss of generality we can set k3 = 0
in the integrand. This gives

see equations (A.17) on next page

The evaluation of the momentum integrals at leading or-
der in the 1/MN expansion corresponding the leading or-
der in the large NC expansion due to the proportionality
MN ∼ NC in QCD with SU(NC) gauge group at NC → ∞
[22] (see also ref. [1]) yields

J αµν(k2, k3;Q) = 3 (kα
2 g

νµ − kν
2g

µα)

+
1
9

(1 + 2a) (kα
2 g

νµ + kν
2g

µα),

J µν(k2, k3;Q) = gµν4MN J2(MN) ∼ O(1/N2
C),

(A.18)

where the terms proportional to kµ
2 have been dropped,

because they produce the contributions to the effective
Lagrangian multiplied by ∂µDµ(x) vanishing by virtue of
the constraint ∂µDµ(x) = 0. Then, J2(MN) is a logarith-
mically divergent integral defined in the NNJL model in
terms of the cut-off ΛD = 46.172 MeV such as ΛD �MN
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J αµν(k2, k3;Q) =

∫
d4k

π2i
tr

{
γαγ5 1

MN − k̂ − Q̂+ k̂2

γµ 1

MN − k̂ − Q̂
γνγ5 1

MN − k̂ − Q̂− k̂3

}
,

J µν(k2, k3;Q) =

∫
d4k

π2i
tr

{
γ5 1

MN − k̂ − Q̂+ k̂2

γµ 1

MN − k̂ − Q̂
γνγ5 1

MN − k̂ − Q̂− k̂3

}
. (A.15)

J αµν(k2, k3;Q) =

∫
d4k

π2i
tr

{
γαγ5 1

MN − k̂ − Q̂+ k̂2

γµ 1

MN − k̂ − Q̂
γνγ5 1

MN − k̂ − Q̂

}
,

J µν(k2, k3;Q) =

∫
d4k

π2i
tr

{
γ5 1

MN − k̂ − Q̂+ k̂2

γµ 1

MN − k̂ − Q̂
γνγ5 1

MN − k̂ − Q̂

}
, (A.17)

[1]:

J2(MN) =
∫

d4k
π2i

1
(M2

N − k2)2 =

2

ΛD∫
0

d|k |k 2
(M2

N + k 2)3/2
=

2
3

(
ΛD
MN

)3
∼ O(1/N3

C). (A.19)

The cut-off ΛD restricts 3-momenta of the virtual nucleon
fluctuations forming the physical deuteron [1]. Due to the
uncertainty relation ∆rΛD ∼ 1 the spatial region of vir-
tual nucleon fluctuations forming the physical deuteron is
defined by ∆r ∼ 4.274 fm. This agrees with the effective
radius of the deuteron rD = 1/

√
εDMN = 4.319 fm.

Keeping the terms of the same order in the large NC
expansion we get the structure functions

J αµν(k2, k3;Q) = 3 (kα
2 g

νµ − kν
2g

µα)

+
1
9

(1 + 2a) (kα
2 g

νµ + kν
2g

µα),

J µν(k2, k3;Q) = 0, (A.20)

The structure functions eq. (A.20) define the effective La-
grangian Lpp→De+νe

eff (x):

Lpp→De+νe
eff (x) =

gACNN
GV√

2
3gV
8π2

[p̄c(x)γµγ5p(x)] [ψ̄νe(x)γν(1 − γ5)ψe(x)]

×
[
(∂µD

†
ν(x)−∂νD

†
µ(x))+

1
27

(1+2a)(∂µD
†
ν(x)+∂νD

†
µ(x))

]
.

(A.21)

In order to remove uncertainty caused by the shift
of virtual momenta of the one-nucleon loop dia-
grams we demand the invariance of the effective La-
grangian Lpp→De+νe

eff (x) under gauge transformations of
the deuteron field

D†
µ(x) → D†

µ(x) + ∂µΩ(x), (A.22)

where Ω(x) is a gauge function. The requirement of the
invariance of the effective Lagrangian of the low-energy

transition p + p → D + e+ + νe under gauge transfor-
mation eq. (A.22) imposes the constraint a = −1/2. This
reduces the effective Lagrangian Lpp→De+νe

eff (x) to the form

Lpp→De+νe
eff (x) = gACNN

GV√
2

3gV
8π2

×D†
µν(x) [p̄c(x)γµγ5p(x)] [ψ̄νe(x)γν(1 − γ5)ψe(x)].

(A.23)

This effective Lagrangian is defined by the structure func-
tion J αµν(k2, k2;Q):

J αµν(k2, k3;Q) = 3 (kα
2 g

νµ − kν
2g

µα). (A.24)

The structure function J αµν(k2, k2;Q) does not depend
on the mass of virtual nucleons and according to Gert-
sein and Jackiw [37] can be valued as the anomaly of
the one-nucleon triangle AAV-diagram. The requirement
of gauge invariance applied to remove ambiguities of the
structure function J αµν(k2, k3;Q) and to fix the contribu-
tion of the anomaly of the one-nucleon loop AAV-diagrams
is in complete agreement with the derivation of the Adler-
Bell-Jackiw axial-vector anomaly performed in terms of
one-nucleon loop AVV-diagrams (see Jackiw [54]).

The effective Lagrangian Lν̄eD→e+nn
eff (x) describing the

low-energy transition ν̄e + D → e+ + n + n can be ob-
tained by the way analogous to Lpp→De+νe

eff (x) and reads

Lν̄eD→e+nn
eff (x) = − gA CNN GV√

2
3gV
8π2

×Dµν(x) [n̄(x)γµγ5nc(x)] [ψ̄νe(x)γν(1 − γ5)ψe(x)].
(A.25)

In the low-energy limit when D†
µν(x) [p̄c(x)γµγ5p(x)] →

− 2 iMND
†
ν(x)[p̄c(x)γ5p(x)] the effective Lagrangian eq.

(A.23) reduces itself to the form

Lpp→De+νe
eff (x) = − i gAMN CNN

GV√
2

3gV
4π2

×D†
ν(x) [p̄c(x)γ5p(x)] [ψ̄νe(x)γν(1 − γ5)ψe(x)].(A.26)

The low-energy reduction Dµν [n̄(x)γµγ5nc(x)] →
− 2 iMNDν(x)n̄(x)γ5nc(x) applied to the effective
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Lagrangian Lν̄eD→e+nn
eff (x) gives

Lν̄eD→e+nn
eff (x) = i gAMN CNN

GV√
2

3gV
4π2

×Dν(x) [n̄(x)γ5nc(x)] [ψ̄νe(x)γν(1 − γ5)ψe(x)].(A.27)

The effective Lagrangians eq. (A.23) and eq. (A.25) as
well as eq. (A.26) and eq. (A.27) testify distinctly that
the transitions p + p → D + e+ + νe and ν̄e + D → e+
n + n are governed by the same dynamics of low-energy
nuclear forces in agreement with charge independence of
weak interaction strength.

For the evaluation of the effective Lagrangian
LνeD→νenp
eff (x) of the transition νe + D → νe + n + p in the

NNJL model one should use the following Lagrangians:

L†
npD(x) = −igV[p̄(x)γµnc(x) − n̄(x)γµpc(x)]Dµ(x),

Lnp→npeff (x) = CNN {[p̄(x) γµγ5nc(x)] [n̄c(x) γµγ
5p(x)]

+[p̄(x) γ5nc(x)] [n̄c(x) γ5p(x)]},
LNNZ(x) = gA [p̄(x)γνγ5p(x) − n̄(x)γνγ5n(x)]Zν(x),

Zν(x) → GF

2
√

2
[ψ̄νe(x)γν(1 − γ5)ψe(x)]. (A.28)

The effective Lagrangian LνeD→νenp
eff (x) of the low-energy

transition νe + D → νe + n + p is then defined by

LνeD→νenp
eff (x) = − gA CNN GF√

2
3gV
8π2

Dµν(x)

×[p̄(x)γµγ5nc(x)] [ψ̄νe(x)γν(1 − γ5)ψνe(x)]. (A.29)

In the low-energy limit when Dµν(x)[p̄(x)γµγ5nc(x)] →
−2iMNDν(x)[p̄(x)γ5nc(x)] the effective Lagrangian re-
duces itself to the from

LνeD→νenp
eff (x) = i gAMN CNN

GF√
2

3gV
4π2

×Dν(x) [p̄(x)γ5nc(x)] [ψ̄νe(x)γν(1 − γ5)ψνe(x)]. (A.30)

For the evaluation of the matrix element of the transition
νe + D → νe + n + p one would use the wave func-
tion of the np pair in the standard form |n(p1)p(p2)〉 =
a†n(p1, σ1) a†p(p2, σ2)|0〉. The contribution of low-energy
nuclear forces to the relative movement of the np pair
in the 1S0 state should be described by the infinite se-
ries of one-nucleon bubbles evaluated at leading order in
the large NC expansion. The result should be expressed
in terms of the S wave scattering length anp and the ef-
fective range rnp of low-energy elastic np scattering in the
1S0 state.

Now let us obtain the contribution of the nucleon ten-
sor current eq. (4.10). In terms of the structure functions

the effective Lagrangian δLpp→De+νe
eff (x)

∫
d4x δLpp→De+νe

eff (x) =

= − gACNN8π2
GV√

2
gT

2MN

∫
d4x1

∫
d4x2d4k2

(2π)4
d4x3d4k3

(2π)4

×e−ik2 · (x2 − x1)e−ik3 · (x3 − x1)
×T([p̄c(x1) γαγ

5p(x1)]D†
µν(x2)

×[ψ̄νe(x3)γλ(1 − γ5)ψe(x3)])Jαµνλ(k2, k3;Q)

− gACNN8π2
GV√

2
gT

2MN

∫
d4x1

∫
d4x2d4k2

(2π)4
d4x3d4k3

(2π)4

×e−ik2 · (x2 − x1)e−ik3 · (x3 − x1)
×T([p̄c(x1) γ5p(x1)]D†

µν(x2)

×[ψ̄νe(x3)γλ(1 − γ5)ψe(x3)])Jµνλ(k2, k3;Q). (A.31)

The structure functions are given by

see equations (A.32) on next page

where a 4-vector Q = a k2 + b k3 is an arbitrary shift of a
virtual momentum with arbitrary parameters a and b.

The evaluation of the structure functions eq. (A.32)
at leading order in the large NC expansion gives the fol-
lowing effective Lagrangian δLpp→De+νe

eff (x) caused by the
contribution of the nucleon tensor current

δLpp→De+νe
eff (x) = gA CNN

GV√
2
gT
2π2

×
{
D†

µν(x) [p̄c(x)γµγ5p(x)]− ia

2MN
∂µD†

µν(x)[p̄c(x)γ5p(x)]
}

×[ψ̄νe(x)γν(1 − γ5)ψe(x)].
(A.33)

It is seen that the coupling constants of the effective La-
grangian depend on the arbitrary parameter a caused by
a shift of a virtual momentum.

The analogous expression one can get for the effective
Lagrangian of the transition ν̄e + D → e+ + n + n caused
by the contribution of the nucleon tensor current as well

δLν̄eD→e+nn
eff (x)=gA CNN

GV√
2
gT
2π2

{
Dµν(x)

×[n̄(x)γµγ5nc(x)] − ia

2MN
∂µDµν(x)[n̄(x)γ5nc(x)]

}
×[ψ̄νe(x)γν(1 − γ5)ψe(x)]. (A.34)

In the low-energy limit when

D†
µν(x) [p̄c(x)γµγ5p(x)] → − 2 iMND

†
ν(x) [p̄c(x)γ5p(x)],

Dµν(x) [n̄(x)γµγ5nc(x)] → − 2 iMNDν(x) [n̄(x)γ5n(x)]
(A.35)
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J αµνλ(k2, k3;Q) =

∫
d4k

π2i
tr

{
γαγ5 1

MN − k̂ − Q̂+ k̂2

σµν 1

MN − k̂ − Q̂
γλγ5 1

MN − k̂ − Q̂− k̂3

}
,

J µνλ(k2, k3;Q) =

∫
d4k

π2i
tr

{
γ5 1

MN − k̂ − Q̂+ k̂2

σµν 1

MN − k̂ − Q̂
γλγ5 1

MN − k̂ − Q̂− k̂3

}
, (A.32)

the effective Lagrangians eq. (A.33) and eq. (A.34) can be
recast into the form

δLpp→De+νe
eff (x) = − i gAMN CNN

×GV√
2

3gT
4π2

ξ D†
ν(x)[p̄c(x)γ5p(x)] [ψ̄νe(x)γν(1 − γ5)ψe(x)],

δLν̄eD→e+nn
eff (x) = − i gAMN CNN

×GV√
2

3gT
4π2

ξ Dν(x)[n̄(x)γ5nc(x)] [ψ̄νe(x)γν(1−γ5)ψe(x)],

(A.36)

where ξ is an arbitrary parameter related to the parameter
a as follows:

ξ =
1
3

(4 − a). (A.37)

The total effective Lagrangians of the transitions p + p
→ D + e+ + νe, ν̄e + D → e+ + n + n and ν̄e + D → ν̄e
+ n + p are defined by

Lpp→De+νe
eff,tc (x) = − i (1 + ξ̄) gAMN CNN

GV√
2

3gV
4π2

×D†
ν(x)[p̄c(x)γ5p(x)] [ψ̄νe(x)γν(1 − γ5)ψe(x)],

Lν̄eD→e+nn
eff (x) = − i (1 + ξ̄) gAMN CNN

GV√
2

3gV
4π2

×Dν(x)[n̄(x)γ5nc(x)] [ψ̄νe(x)γν(1 − γ5)ψe(x)],

LνeD→νenp
eff (x) = i (1 + ξ̄) gAMN CNN

GF√
2

3gV
4π2

×Dν(x) [p̄(x)γ5nc(x)] [ψ̄νe(x)γν(1 − γ5)ψνe(x)],
(A.38)

where ξ̄ is obtained by using the relation gT =
√

3/8 gV
and is defined by

ξ̄ =

√
3
8
ξ. (A.39)

Under the assumption of isotropical invariance of low-
energy nuclear forces, the best agreement with the rec-
ommended value for the astrophysical factor for the solar
proton burning [29] and the contemporary experimental
data [36] on the cross-sections for the antineutrino disin-
tegration of the deuteron ν̄e + D → e+ + n + n and ν̄e
+ D → ν̄e + n + p caused by charged and neutral weak
current, respectively, we obtain at ξ̄ = 0.
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